Effect of Withanolide A on 7-Ketocholesterol Induced Cytotoxicity in hCMEC/D3 Brain Endothelial Cells

Withanolide A is a naturally occurring phytochemical that is found in Ashwagandha (<i>Withania somnifera</i>, fam. Solanaceae) or Indian Ginseng. In the current study, we elucidated the effect of withanolide A on 7-ketocholesterol (7KC) induced injury in hCMEC/D3 human brain endothelial...

Full description

Bibliographic Details
Main Authors: Sandra Soh, Wei-Yi Ong
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/11/3/457
Description
Summary:Withanolide A is a naturally occurring phytochemical that is found in Ashwagandha (<i>Withania somnifera</i>, fam. Solanaceae) or Indian Ginseng. In the current study, we elucidated the effect of withanolide A on 7-ketocholesterol (7KC) induced injury in hCMEC/D3 human brain endothelial cells. 7KC is a cholesterol oxidation product or oxysterol that is present in atherosclerotic plaques and is elevated in the plasma of patients with hypercholesterolemia and/or diabetes mellitus. Results showed that withanolide A significantly reduced the effects of 7KC, which include loss of endothelial cell viability, increase in expression of pro-inflammatory genes-IL-1β, IL-6, IL-8, TNF-α, cyclooxygenase-2 (COX-2), increased COX-2 enzyme activity, increased ROS formation, increased expression of inducible nitric oxide synthase and genes associated with blood clotting, including Factor 2/thrombin, Factor 8, von Willebrand factor, and thromboxane A synthase, and increased human thrombin enzyme activity. Some of the above effects of withanolide A on 7KC were reduced in the presence of the glucocorticoid receptor antagonist, mifepristone (RU486). These findings suggest that the glucocorticoid receptor could play a role in the cytoprotective, antioxidant, and anti-clotting effects of withanolide A against 7KC. Further studies are necessary to elucidate the detailed mechanisms of action of withanolide A against oxysterol-induced injury.
ISSN:2073-4409