Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).

The ability to identify drivers responsible for algal community shifts is an important aspect of environmental issues. The lack of long-term datasets, covering periods prior to these shifts, is often limiting our understanding of drivers responsible. The freshwater alga, Gonyostomum semen (Raphidoph...

Full description

Bibliographic Details
Main Authors: Camilla Hedlund Corneliussen Hagman, Thomas Rohrlack, Silvio Uhlig, Vladyslava Hostyeva
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0226650
_version_ 1818589012705673216
author Camilla Hedlund Corneliussen Hagman
Thomas Rohrlack
Silvio Uhlig
Vladyslava Hostyeva
author_facet Camilla Hedlund Corneliussen Hagman
Thomas Rohrlack
Silvio Uhlig
Vladyslava Hostyeva
author_sort Camilla Hedlund Corneliussen Hagman
collection DOAJ
description The ability to identify drivers responsible for algal community shifts is an important aspect of environmental issues. The lack of long-term datasets, covering periods prior to these shifts, is often limiting our understanding of drivers responsible. The freshwater alga, Gonyostomum semen (Raphidophyceae), has significantly increased distribution and mass occurrences in Scandinavian lakes during the past few decades, often releasing a skin irritating slime that causes discomfort for swimmers. While the alga has been extensively studied, long-term data from individual lakes are often absent or greatly limited and drivers behind this species' success are still not clear. However, if specific and persistent taxa biomarkers for G. semen could be detected in dated sediment cores, long-term data would be improved and more useful. To test for biomarkers, we examined the pigment composition of several G. semen strains in culture. Further, dated sediment core samples from Lake Lundebyvann, Norway, were used to test the pigments' suitability as biomarkers in paleolimnological studies. Modifications to a common analysis allowed for the successful detection of the polar xanthophyll heteroxanthin and the non-polar chlorophyll a, as well as several other algal pigments by using high performance liquid chromatography-photometric diode arrays (HPLC-PDA). Heteroxanthin was confirmed by liquid chromatography-mass spectrometry (LC-MS) and detected by HPLC-PDA in all examined G. semen strains, along with chlorophyll a. Using HPLC-PDA, we also identified and confirmed the presence of the biomarker, xanthophyll heteroxanthin, in sediment core samples up to 60 years of age. The specificity of this xanthophyll was also tested by examining a wide range of algal strains from common Norwegian phytoplankton species. Heteroxanthin was not detected in any species commonly occurring in significant amounts in Norwegian lakes. We therefore conclude that heteroxanthin is a suitable pigment biomarker for G. semen and that this pigment can be successfully used for paleolimnological studies.
first_indexed 2024-12-16T09:33:53Z
format Article
id doaj.art-d1a76e4bc42b405997028dd41c89d9b8
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-16T09:33:53Z
publishDate 2019-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-d1a76e4bc42b405997028dd41c89d9b82022-12-21T22:36:28ZengPublic Library of Science (PLoS)PLoS ONE1932-62032019-01-011412e022665010.1371/journal.pone.0226650Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).Camilla Hedlund Corneliussen HagmanThomas RohrlackSilvio UhligVladyslava HostyevaThe ability to identify drivers responsible for algal community shifts is an important aspect of environmental issues. The lack of long-term datasets, covering periods prior to these shifts, is often limiting our understanding of drivers responsible. The freshwater alga, Gonyostomum semen (Raphidophyceae), has significantly increased distribution and mass occurrences in Scandinavian lakes during the past few decades, often releasing a skin irritating slime that causes discomfort for swimmers. While the alga has been extensively studied, long-term data from individual lakes are often absent or greatly limited and drivers behind this species' success are still not clear. However, if specific and persistent taxa biomarkers for G. semen could be detected in dated sediment cores, long-term data would be improved and more useful. To test for biomarkers, we examined the pigment composition of several G. semen strains in culture. Further, dated sediment core samples from Lake Lundebyvann, Norway, were used to test the pigments' suitability as biomarkers in paleolimnological studies. Modifications to a common analysis allowed for the successful detection of the polar xanthophyll heteroxanthin and the non-polar chlorophyll a, as well as several other algal pigments by using high performance liquid chromatography-photometric diode arrays (HPLC-PDA). Heteroxanthin was confirmed by liquid chromatography-mass spectrometry (LC-MS) and detected by HPLC-PDA in all examined G. semen strains, along with chlorophyll a. Using HPLC-PDA, we also identified and confirmed the presence of the biomarker, xanthophyll heteroxanthin, in sediment core samples up to 60 years of age. The specificity of this xanthophyll was also tested by examining a wide range of algal strains from common Norwegian phytoplankton species. Heteroxanthin was not detected in any species commonly occurring in significant amounts in Norwegian lakes. We therefore conclude that heteroxanthin is a suitable pigment biomarker for G. semen and that this pigment can be successfully used for paleolimnological studies.https://doi.org/10.1371/journal.pone.0226650
spellingShingle Camilla Hedlund Corneliussen Hagman
Thomas Rohrlack
Silvio Uhlig
Vladyslava Hostyeva
Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
PLoS ONE
title Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
title_full Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
title_fullStr Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
title_full_unstemmed Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
title_short Heteroxanthin as a pigment biomarker for Gonyostomum semen (Raphidophyceae).
title_sort heteroxanthin as a pigment biomarker for gonyostomum semen raphidophyceae
url https://doi.org/10.1371/journal.pone.0226650
work_keys_str_mv AT camillahedlundcorneliussenhagman heteroxanthinasapigmentbiomarkerforgonyostomumsemenraphidophyceae
AT thomasrohrlack heteroxanthinasapigmentbiomarkerforgonyostomumsemenraphidophyceae
AT silviouhlig heteroxanthinasapigmentbiomarkerforgonyostomumsemenraphidophyceae
AT vladyslavahostyeva heteroxanthinasapigmentbiomarkerforgonyostomumsemenraphidophyceae