3D hand pose and shape estimation from monocular RGB via efficient 2D cues
Abstract Estimating 3D hand shape from a single-view RGB image is important for many applications. However, the diversity of hand shapes and postures, depth ambiguity, and occlusion may result in pose errors and noisy hand meshes. Making full use of 2D cues such as 2D pose can effectively improve th...
Автори: | , , , , , |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
SpringerOpen
2023-11-01
|
Серія: | Computational Visual Media |
Предмети: | |
Онлайн доступ: | https://doi.org/10.1007/s41095-023-0346-4 |