Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation

Low-density porous concrete can be used as a sound absorbing material. This paper generalizes porous concrete sound absorption investigations. Porous concrete relative wave resistance modulus is longer than air wave resistance W=1 and that is why this material can be ascribed to materials with a...

Full description

Bibliographic Details
Main Authors: Antanas Laukaitis, Vytautas Lasauskas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 1996-12-01
Series:Journal of Civil Engineering and Management
Subjects:
-
Online Access:http://journals.vgtu.lt/index.php/JCEM/article/view/9513
_version_ 1811191542301327360
author Antanas Laukaitis
Vytautas Lasauskas
author_facet Antanas Laukaitis
Vytautas Lasauskas
author_sort Antanas Laukaitis
collection DOAJ
description Low-density porous concrete can be used as a sound absorbing material. This paper generalizes porous concrete sound absorption investigations. Porous concrete relative wave resistance modulus is longer than air wave resistance W=1 and that is why this material can be ascribed to materials with a high resistance to air flows, i.e. materials with a satisfactory sound absorption. Various thickness porous concrete sample sound absorption coefficients can be calculated according to equations (1), (2), (3), when wave parameter values are determinated (Table 1). Normal sound absorption coefficient measurement results (Fig. 1) show that for 35 mm and thicker samples the coefficient does not vary. It means that the samples apparent resistance (impleance) coincides with the materials wave resistance. The sound absorption coefficient increases (Fig. 2) with a decrease in porous concrete density. The asymmetric average dependency is expressed by a rectilinear curve (Fig. 3). The sound absorption coefficient depends not only on porous concrete density, but also on its nature (Fig. 4). The different sound absorption coefficient values for uniform density porous concrete can be explained by the various structure of porous concrete products, i.e. a change in pore dimensions, their amount and distribution (Fig. 5, Table 2). The production of acoustical slabs has shown that 280350 kg/m3 density porous concrete products are not sufficiently strong. It was therefore decided to increase their density to 460 kg/m3, with the purpose of increasing the sound absorption coefficient by using various special form resonators (cavity-type accelerators). The influence of the cuts on sound absorption is given in Fig. 6 (cut step is 22 mm). Measurements in a reverberation chamber have shown that the sound absorption coefficient value in porous concrete slabs with deeper or complex cuts increases, but it is harder to produce slabs with complex form cuts. It is easier to make a simple form resonator. Reverberated sound absorption for regular form resonators is given in Fig. 7. Porous concrete slab surface acoustical resistance decreases due to cuts and that is why there is an increase in sound absorption coefficients (Fig. 7, 2 and 3 curves).Porous concrete slabs with resonator cuts on both sides can be used in spacious constructions, for noise absorption in industrial premises. In this case, the construction sound absorption coefficient depends on the lay-out of these slabs. Three types of special lay-outs were investigated (Fig. 8, Table 3). Most of the investigated constructions have revertible sound absorption coefficients higher than 1. This is explained by sound diffraction phenomena on the slab edges. The most effective of all the investigated constructions are those where porous concrete slabs with two-sided perforations are hung jointly (Fig. 8, curves 6 and 10). They are effective in the entire distance between the slabs. The reverberation absorption coefficient decreases for all types of constructions (Fig. 8, curves 1 and 2, 5 and 6, 7–10). The special construction sound absorption coefficient can be changed by selecting porous concrete slab lay-out. First Published Online: 26 Jul 2012
first_indexed 2024-04-11T15:07:34Z
format Article
id doaj.art-d1be96e1f4fa42278f19d69c13676667
institution Directory Open Access Journal
issn 1392-3730
1822-3605
language English
last_indexed 2024-04-11T15:07:34Z
publishDate 1996-12-01
publisher Vilnius Gediminas Technical University
record_format Article
series Journal of Civil Engineering and Management
spelling doaj.art-d1be96e1f4fa42278f19d69c136766672022-12-22T04:16:46ZengVilnius Gediminas Technical UniversityJournal of Civil Engineering and Management1392-37301822-36051996-12-012810.3846/13921525.1996.10590174Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigationAntanas Laukaitis0Vytautas Lasauskas1Institute Termoizoliacija , 28 Linkmenų St, 2600 , Vilnius , LithuaniaInstitute “Termoizoliacija” , 28 Linkmenų St, 2600 , Vilnius , LithuaniaLow-density porous concrete can be used as a sound absorbing material. This paper generalizes porous concrete sound absorption investigations. Porous concrete relative wave resistance modulus is longer than air wave resistance W=1 and that is why this material can be ascribed to materials with a high resistance to air flows, i.e. materials with a satisfactory sound absorption. Various thickness porous concrete sample sound absorption coefficients can be calculated according to equations (1), (2), (3), when wave parameter values are determinated (Table 1). Normal sound absorption coefficient measurement results (Fig. 1) show that for 35 mm and thicker samples the coefficient does not vary. It means that the samples apparent resistance (impleance) coincides with the materials wave resistance. The sound absorption coefficient increases (Fig. 2) with a decrease in porous concrete density. The asymmetric average dependency is expressed by a rectilinear curve (Fig. 3). The sound absorption coefficient depends not only on porous concrete density, but also on its nature (Fig. 4). The different sound absorption coefficient values for uniform density porous concrete can be explained by the various structure of porous concrete products, i.e. a change in pore dimensions, their amount and distribution (Fig. 5, Table 2). The production of acoustical slabs has shown that 280350 kg/m3 density porous concrete products are not sufficiently strong. It was therefore decided to increase their density to 460 kg/m3, with the purpose of increasing the sound absorption coefficient by using various special form resonators (cavity-type accelerators). The influence of the cuts on sound absorption is given in Fig. 6 (cut step is 22 mm). Measurements in a reverberation chamber have shown that the sound absorption coefficient value in porous concrete slabs with deeper or complex cuts increases, but it is harder to produce slabs with complex form cuts. It is easier to make a simple form resonator. Reverberated sound absorption for regular form resonators is given in Fig. 7. Porous concrete slab surface acoustical resistance decreases due to cuts and that is why there is an increase in sound absorption coefficients (Fig. 7, 2 and 3 curves).Porous concrete slabs with resonator cuts on both sides can be used in spacious constructions, for noise absorption in industrial premises. In this case, the construction sound absorption coefficient depends on the lay-out of these slabs. Three types of special lay-outs were investigated (Fig. 8, Table 3). Most of the investigated constructions have revertible sound absorption coefficients higher than 1. This is explained by sound diffraction phenomena on the slab edges. The most effective of all the investigated constructions are those where porous concrete slabs with two-sided perforations are hung jointly (Fig. 8, curves 6 and 10). They are effective in the entire distance between the slabs. The reverberation absorption coefficient decreases for all types of constructions (Fig. 8, curves 1 and 2, 5 and 6, 7–10). The special construction sound absorption coefficient can be changed by selecting porous concrete slab lay-out. First Published Online: 26 Jul 2012http://journals.vgtu.lt/index.php/JCEM/article/view/9513-
spellingShingle Antanas Laukaitis
Vytautas Lasauskas
Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
Journal of Civil Engineering and Management
-
title Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
title_full Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
title_fullStr Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
title_full_unstemmed Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
title_short Akytojo betono garso absorbcijos tyrimai/Porous concrete sound absorption investigation
title_sort akytojo betono garso absorbcijos tyrimai porous concrete sound absorption investigation
topic -
url http://journals.vgtu.lt/index.php/JCEM/article/view/9513
work_keys_str_mv AT antanaslaukaitis akytojobetonogarsoabsorbcijostyrimaiporousconcretesoundabsorptioninvestigation
AT vytautaslasauskas akytojobetonogarsoabsorbcijostyrimaiporousconcretesoundabsorptioninvestigation