Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions
Addressing urban traffic congestion is a pressing issue requiring efficient solutions that need to be analyzed regarding travel time and pollutant emissions. The traffic weighted multi-maps (TWM) method has been proposed as an efficient mechanism for congestion mitigation that enables differential t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Systems |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-8954/12/3/89 |
_version_ | 1797239266735030272 |
---|---|
author | Alvaro Paricio-Garcia Miguel A. Lopez-Carmona |
author_facet | Alvaro Paricio-Garcia Miguel A. Lopez-Carmona |
author_sort | Alvaro Paricio-Garcia |
collection | DOAJ |
description | Addressing urban traffic congestion is a pressing issue requiring efficient solutions that need to be analyzed regarding travel time and pollutant emissions. The traffic weighted multi-maps (TWM) method has been proposed as an efficient mechanism for congestion mitigation that enables differential traffic routing and path diversity by strategically distributing different network views (maps) to the drivers. Previous works have focused on TWM generation by creating optimal edge weights, but the complexity exponentially increases with the network size and traffic group diversity. This work describes how congestion and emissions can be addressed using TWM maps based on the k-shortest paths for the traffic flows (instead of individuals) that are optimally assigned and distributed to the components of the traffic flow. The map allocation strategies optimal TWM (OTV), optimal TWM per path flow with linear constraints (LCTV), and its variant unconstrained optimal TWM per path flow (UCTV) are described. They use maps generated from the k-shortest paths of the traffic flows (kSP-TWM). The heuristic solution obtained is compared with the theoretical static traffic assignment estimation baseline with different configurations, regarding congestion reduction, total travel time enhancement, and pollutant emissions. Experiments are developed using a synthetic traffic grid network scenario with a mesoscopic simulation. They show that the solution provided is adequate for its proximity to the theoretical equilibrium solutions and can generate minimum emissions patterns. The presented solution opens new possibilities for further congestion and pollutant management studies and seamless integration with existing traffic management frameworks. |
first_indexed | 2024-04-24T17:48:49Z |
format | Article |
id | doaj.art-d1c5d3fb6b73456e896a12ab1334ba26 |
institution | Directory Open Access Journal |
issn | 2079-8954 |
language | English |
last_indexed | 2024-04-24T17:48:49Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Systems |
spelling | doaj.art-d1c5d3fb6b73456e896a12ab1334ba262024-03-27T14:05:43ZengMDPI AGSystems2079-89542024-03-011238910.3390/systems12030089Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant EmissionsAlvaro Paricio-Garcia0Miguel A. Lopez-Carmona1Escuela Politecnica Superior, Departamento de Automatica, Campus Externo de la Universidad de Alcala, Universidad de Alcala, 28805 Alcala de Henares, Madrid, SpainEscuela Politecnica Superior, Departamento de Automatica, Campus Externo de la Universidad de Alcala, Universidad de Alcala, 28805 Alcala de Henares, Madrid, SpainAddressing urban traffic congestion is a pressing issue requiring efficient solutions that need to be analyzed regarding travel time and pollutant emissions. The traffic weighted multi-maps (TWM) method has been proposed as an efficient mechanism for congestion mitigation that enables differential traffic routing and path diversity by strategically distributing different network views (maps) to the drivers. Previous works have focused on TWM generation by creating optimal edge weights, but the complexity exponentially increases with the network size and traffic group diversity. This work describes how congestion and emissions can be addressed using TWM maps based on the k-shortest paths for the traffic flows (instead of individuals) that are optimally assigned and distributed to the components of the traffic flow. The map allocation strategies optimal TWM (OTV), optimal TWM per path flow with linear constraints (LCTV), and its variant unconstrained optimal TWM per path flow (UCTV) are described. They use maps generated from the k-shortest paths of the traffic flows (kSP-TWM). The heuristic solution obtained is compared with the theoretical static traffic assignment estimation baseline with different configurations, regarding congestion reduction, total travel time enhancement, and pollutant emissions. Experiments are developed using a synthetic traffic grid network scenario with a mesoscopic simulation. They show that the solution provided is adequate for its proximity to the theoretical equilibrium solutions and can generate minimum emissions patterns. The presented solution opens new possibilities for further congestion and pollutant management studies and seamless integration with existing traffic management frameworks.https://www.mdpi.com/2079-8954/12/3/89traffic emissionstraffic assignmentintelligent transportation systemsevolutionary algorithmsmulti-map routingpath flows |
spellingShingle | Alvaro Paricio-Garcia Miguel A. Lopez-Carmona Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions Systems traffic emissions traffic assignment intelligent transportation systems evolutionary algorithms multi-map routing path flows |
title | Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions |
title_full | Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions |
title_fullStr | Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions |
title_full_unstemmed | Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions |
title_short | Impact of Static Urban Traffic Flow-Based Traffic Weighted Multi-Maps Routing Strategies on Pollutant Emissions |
title_sort | impact of static urban traffic flow based traffic weighted multi maps routing strategies on pollutant emissions |
topic | traffic emissions traffic assignment intelligent transportation systems evolutionary algorithms multi-map routing path flows |
url | https://www.mdpi.com/2079-8954/12/3/89 |
work_keys_str_mv | AT alvaropariciogarcia impactofstaticurbantrafficflowbasedtrafficweightedmultimapsroutingstrategiesonpollutantemissions AT miguelalopezcarmona impactofstaticurbantrafficflowbasedtrafficweightedmultimapsroutingstrategiesonpollutantemissions |