Aggregating pairwise semantic differences for few-shot claim verification

As part of an automated fact-checking pipeline, the claim verification task consists in determining if a claim is supported by an associated piece of evidence. The complexity of gathering labelled claim-evidence pairs leads to a scarcity of datasets, particularly when dealing with new domains. In th...

Full description

Bibliographic Details
Main Authors: Xia Zeng, Arkaitz Zubiaga
Format: Article
Language:English
Published: PeerJ Inc. 2022-10-01
Series:PeerJ Computer Science
Subjects:
Online Access:https://peerj.com/articles/cs-1137.pdf
Description
Summary:As part of an automated fact-checking pipeline, the claim verification task consists in determining if a claim is supported by an associated piece of evidence. The complexity of gathering labelled claim-evidence pairs leads to a scarcity of datasets, particularly when dealing with new domains. In this article, we introduce Semantic Embedding Element-wise Difference (SEED), a novel vector-based method to few-shot claim verification that aggregates pairwise semantic differences for claim-evidence pairs. We build on the hypothesis that we can simulate class representative vectors that capture average semantic differences for claim-evidence pairs in a class, which can then be used for classification of new instances. We compare the performance of our method with competitive baselines including fine-tuned Bidirectional Encoder Representations from Transformers (BERT)/Robustly Optimized BERT Pre-training Approach (RoBERTa) models, as well as the state-of-the-art few-shot claim verification method that leverages language model perplexity. Experiments conducted on the Fact Extraction and VERification (FEVER) and SCIFACT datasets show consistent improvements over competitive baselines in few-shot settings. Our code is available.
ISSN:2376-5992