On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$

Let $p\equiv1\pmod8$ and $q\equiv3\pmod8$ be two prime integers and let $\ell\not\in\{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb{Q}\big(\sqrt{2p}\big) $ has a negative norm, we investigate the unit group of the fields $\mathbb{Q}\big(\sqrt2, \sq...

Full description

Bibliographic Details
Main Author: Mohamed Mahmoud Chems-Eddin
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2023-07-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/148/2/mb148_2_7.pdf
_version_ 1797837599208898560
author Mohamed Mahmoud Chems-Eddin
author_facet Mohamed Mahmoud Chems-Eddin
author_sort Mohamed Mahmoud Chems-Eddin
collection DOAJ
description Let $p\equiv1\pmod8$ and $q\equiv3\pmod8$ be two prime integers and let $\ell\not\in\{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb{Q}\big(\sqrt{2p}\big) $ has a negative norm, we investigate the unit group of the fields $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell} \big)$.
first_indexed 2024-04-09T15:28:24Z
format Article
id doaj.art-d1d99fa061fb4c1687ecb0cfe35ff012
institution Directory Open Access Journal
issn 0862-7959
2464-7136
language English
last_indexed 2024-04-09T15:28:24Z
publishDate 2023-07-01
publisher Institute of Mathematics of the Czech Academy of Science
record_format Article
series Mathematica Bohemica
spelling doaj.art-d1d99fa061fb4c1687ecb0cfe35ff0122023-04-28T12:19:40ZengInstitute of Mathematics of the Czech Academy of ScienceMathematica Bohemica0862-79592464-71362023-07-01148223724210.21136/MB.2022.0128-21MB.2022.0128-21On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$Mohamed Mahmoud Chems-EddinLet $p\equiv1\pmod8$ and $q\equiv3\pmod8$ be two prime integers and let $\ell\not\in\{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb{Q}\big(\sqrt{2p}\big) $ has a negative norm, we investigate the unit group of the fields $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell} \big)$.http://mb.math.cas.cz/full/148/2/mb148_2_7.pdf multiquadratic number field unit group fundamental system of units
spellingShingle Mohamed Mahmoud Chems-Eddin
On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
Mathematica Bohemica
multiquadratic number field
unit group
fundamental system of units
title On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
title_full On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
title_fullStr On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
title_full_unstemmed On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
title_short On units of some fields of the form $\mathbb{Q}\big(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-l}\big)$
title_sort on units of some fields of the form mathbb q big sqrt2 sqrt p sqrt q sqrt l big
topic multiquadratic number field
unit group
fundamental system of units
url http://mb.math.cas.cz/full/148/2/mb148_2_7.pdf
work_keys_str_mv AT mohamedmahmoudchemseddin onunitsofsomefieldsoftheformmathbbqbigsqrt2sqrtpsqrtqsqrtlbig