Dynamic analysis and characterization of a nonlinear bi-stable piezo-magneto-elastic energy harvester
Energy harvesting is a very promising technology to provide low levels of power for small autonomous systems, which the applicability encompass a very wide range of areas, that spans from micro/nano sensors in engineering to state of art implants in medicine. The present work deals with the analysis...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201824101001 |
Summary: | Energy harvesting is a very promising technology to provide low levels of power for small autonomous systems, which the applicability encompass a very wide range of areas, that spans from micro/nano sensors in engineering to state of art implants in medicine. The present work deals with the analysis and detailed characterization of a nonlinear bi-stable piezo-magneto-elastic energy harvester driven by a periodic external excitation. The dynamical system is studied in depth through bifurcation diagrams and basins of attraction. The level of chaoticity of the dynamical system is accessed very efficiently via the 0-1 test for chaos, which allows mapping the presence of dense regions of chaos without the help of the Lyapunov exponents. |
---|---|
ISSN: | 2261-236X |