Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-drive...

Full description

Bibliographic Details
Main Authors: Zhichao Wang, Hong Xia, Jiyu Zhang, Bo Yang, Wenzhe Yin
Format: Article
Language:English
Published: Elsevier 2023-06-01
Series:Nuclear Engineering and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573323001092
Description
Summary:Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.
ISSN:1738-5733