Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture

One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an $a \times b \times c$ box ${\sf B}$ . Let $\Psi (P)$ denote the smallest plane partition conta...

Full description

Bibliographic Details
Main Authors: Rebecca Patrias, Oliver Pechenik
Format: Article
Language:English
Published: Cambridge University Press 2020-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509420000614/type/journal_article
_version_ 1811156204144033792
author Rebecca Patrias
Oliver Pechenik
author_facet Rebecca Patrias
Oliver Pechenik
author_sort Rebecca Patrias
collection DOAJ
description One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an $a \times b \times c$ box ${\sf B}$ . Let $\Psi (P)$ denote the smallest plane partition containing the minimal elements of ${\sf B} - P$ . Then if $p= a+b+c-1$ is prime, Cameron and Fon-Der-Flaass conjectured that the cardinality of the $\Psi $ -orbit of P is always a multiple of p.
first_indexed 2024-04-10T04:47:35Z
format Article
id doaj.art-d201b82c1d7f4c4eae7b85bbac606a10
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:35Z
publishDate 2020-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-d201b82c1d7f4c4eae7b85bbac606a102023-03-09T12:34:47ZengCambridge University PressForum of Mathematics, Sigma2050-50942020-01-01810.1017/fms.2020.61Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjectureRebecca Patrias0Oliver Pechenik1https://orcid.org/0000-0002-7090-2072Department of Mathematics, University of St. Thomas, St. Paul, MN 55105, USA; E-mail:Department of Combinatorics & Optimization, University of Waterloo, Waterloo, ON N2L 3G1, Canada; E-mail:One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an $a \times b \times c$ box ${\sf B}$ . Let $\Psi (P)$ denote the smallest plane partition containing the minimal elements of ${\sf B} - P$ . Then if $p= a+b+c-1$ is prime, Cameron and Fon-Der-Flaass conjectured that the cardinality of the $\Psi $ -orbit of P is always a multiple of p.https://www.cambridge.org/core/product/identifier/S2050509420000614/type/journal_article05E1805A17
spellingShingle Rebecca Patrias
Oliver Pechenik
Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
Forum of Mathematics, Sigma
05E18
05A17
title Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
title_full Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
title_fullStr Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
title_full_unstemmed Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
title_short Dynamics of plane partitions: Proof of the Cameron–Fon-Der-Flaass conjecture
title_sort dynamics of plane partitions proof of the cameron fon der flaass conjecture
topic 05E18
05A17
url https://www.cambridge.org/core/product/identifier/S2050509420000614/type/journal_article
work_keys_str_mv AT rebeccapatrias dynamicsofplanepartitionsproofofthecameronfonderflaassconjecture
AT oliverpechenik dynamicsofplanepartitionsproofofthecameronfonderflaassconjecture