<inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation

We derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantic...

Full description

Bibliographic Details
Main Author: Géza Lévai
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/1/68
_version_ 1827698516270514176
author Géza Lévai
author_facet Géza Lévai
author_sort Géza Lévai
collection DOAJ
description We derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry. We point out that for the implementation of <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry, the symmetrical canonical form of the Heun equation is more suitable than its non-symmetrical canonical form. The potentials identified in this construction depend on twelve parameters, of which three contribute to scaling and shifting the energy and the coordinate. Five parameters control the <inline-formula><math display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> function that detemines the variable transformation taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play the role of the coupling coefficients of four independently tunable potential terms. The potentials obtained this way contain Natanzon-class potentials as special cases. Comparison with the results of an earlier study based on potentials obtained from the non-symmetrical canonical form of the confluent Heun equation is also presented. While the explicit general solutions of the confluent Heun equation are not available, the results are instructive in identifying which potentials can be obtained from this equation and under which conditions they exhibit <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry, either unbroken or broken.
first_indexed 2024-03-10T13:31:24Z
format Article
id doaj.art-d201ed33cf5f49d9904ae7174797fd89
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T13:31:24Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-d201ed33cf5f49d9904ae7174797fd892023-11-21T07:58:45ZengMDPI AGEntropy1099-43002021-01-012316810.3390/e23010068<inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun EquationGéza Lévai0Institute for Nuclear Research (Atomki), P. O. Box 51, H-4001 Debrecen, HungaryWe derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry. We point out that for the implementation of <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry, the symmetrical canonical form of the Heun equation is more suitable than its non-symmetrical canonical form. The potentials identified in this construction depend on twelve parameters, of which three contribute to scaling and shifting the energy and the coordinate. Five parameters control the <inline-formula><math display="inline"><semantics><mrow><mi>z</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> function that detemines the variable transformation taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play the role of the coupling coefficients of four independently tunable potential terms. The potentials obtained this way contain Natanzon-class potentials as special cases. Comparison with the results of an earlier study based on potentials obtained from the non-symmetrical canonical form of the confluent Heun equation is also presented. While the explicit general solutions of the confluent Heun equation are not available, the results are instructive in identifying which potentials can be obtained from this equation and under which conditions they exhibit <inline-formula><math display="inline"><semantics><mi mathvariant="script">PT</mi></semantics></math></inline-formula> symmetry, either unbroken or broken.https://www.mdpi.com/1099-4300/23/1/68confluent Heun differential equationsolvable potentialsPT symmetry
spellingShingle Géza Lévai
<inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
Entropy
confluent Heun differential equation
solvable potentials
PT symmetry
title <inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
title_full <inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
title_fullStr <inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
title_full_unstemmed <inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
title_short <inline-formula> <mml:math id="mm10000" display="block"> <mml:semantics> <mml:mi mathvariant="script">PT</mml:mi> </mml:semantics> </mml:math> </inline-formula>-Symmetric Potentials from the Confluent Heun Equation
title_sort inline formula mml math id mm10000 display block mml semantics mml mi mathvariant script pt mml mi mml semantics mml math inline formula symmetric potentials from the confluent heun equation
topic confluent Heun differential equation
solvable potentials
PT symmetry
url https://www.mdpi.com/1099-4300/23/1/68
work_keys_str_mv AT gezalevai inlineformulammlmathidmm10000displayblockmmlsemanticsmmlmimathvariantscriptptmmlmimmlsemanticsmmlmathinlineformulasymmetricpotentialsfromtheconfluentheunequation