Summary: | We present a comprehensive study of the decay width of multiquark states containing different color singlet components in a coupled-channel approach. We show how the decay width can provide in-depth information about the nature of a coupled-channel resonance. An unexpected behavior of the decay width of a multiquark state could be pointing to a relevant role of the coupled-channel dynamics, aiming at the channel responsible for the formation of the resonance. The symmetrical situation between meson- and baryon-like multiquarks is highlighted. Our study accounts for the existence of narrow resonances with large phase spaces. In the case of resonances far from their detection channel, it is the mass difference with the formation channel that determines their decay width. The larger the binding, the larger the decay width, even though the phase space to the detection channel gets reduced. The trends noticed cast doubts on the molecular assignment of some multiquark candidates. Finally, we wonder about the existence and properties of multiquark partners in other flavor sectors.
|