Safety Risk Assessment Using a BP Neural Network of High Cutting Slope Construction in High-Speed Railway

High-speed railway construction is extending to mountainous areas, and the harsh environment and complex climate pose various risks to the slope construction. This seriously threatens human lives and causes huge economic losses. The existing research results on the construction safety risks of high...

Full description

Bibliographic Details
Main Authors: Jianling Huang, Xiaoye Zeng, Jing Fu, Yang Han, Huihua Chen
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/12/5/598
Description
Summary:High-speed railway construction is extending to mountainous areas, and the harsh environment and complex climate pose various risks to the slope construction. This seriously threatens human lives and causes huge economic losses. The existing research results on the construction safety risks of high cutting slope construction in HSRs are limited, and a complete set of safety risk assessment processes and methods has not yet been formed. Therefore, in this study, we aimed to develop a safety risk assessment model, including factor identification and classification and assessment data processing, to help project managers evaluate safety risks in high cutting slope construction. In this study, comprehensive identification of high cutting slope construction safety risks was carried out from three dimensions, risk technical specification, literature analysis, and case statistical analysis, and a list of risk-influencing factors was formed. Based on the historical data, a high side slope risk evaluation model was established using a BP neural network algorithm. The model was applied to the risk evaluation of HF high cutting slopes. The results show that the risk evaluation level is II; the main risks are earthwork excavation method, scaffolding equipment, slope height, slope rate, groundwater, personnel safety awareness, and construction safety risk management system. Finally, a case study was used to verify the proposed model, and control measures for safety risks were proposed. Our findings will help conduct effective safety management, add to the knowledge of construction safety risk management in terms of implementation, and offer lessons and references for future construction safety management of HSR.
ISSN:2075-5309