Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone–carbon monoxide (O<sub>3</sub>–CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard...

Full description

Bibliographic Details
Main Authors: H.-D. Choi, H. Liu, J. H. Crawford, D. B. Considine, D. J. Allen, B. N. Duncan, L. W. Horowitz, J. M. Rodriguez, S. E. Strahan, L. Zhang, X. Liu, M. R. Damon, S. D. Steenrod
Format: Article
Language:English
Published: Copernicus Publications 2017-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/17/8429/2017/acp-17-8429-2017.pdf
_version_ 1817998110548295680
author H.-D. Choi
H. Liu
J. H. Crawford
D. B. Considine
D. B. Considine
D. J. Allen
B. N. Duncan
L. W. Horowitz
J. M. Rodriguez
S. E. Strahan
S. E. Strahan
L. Zhang
L. Zhang
X. Liu
M. R. Damon
M. R. Damon
S. D. Steenrod
S. D. Steenrod
author_facet H.-D. Choi
H. Liu
J. H. Crawford
D. B. Considine
D. B. Considine
D. J. Allen
B. N. Duncan
L. W. Horowitz
J. M. Rodriguez
S. E. Strahan
S. E. Strahan
L. Zhang
L. Zhang
X. Liu
M. R. Damon
M. R. Damon
S. D. Steenrod
S. D. Steenrod
author_sort H.-D. Choi
collection DOAJ
description We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone–carbon monoxide (O<sub>3</sub>–CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July–August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O<sub>3</sub>–CO correlations to input meteorological data. Model simulations of radionuclide tracers (<sup>222</sup>Rn, <sup>210</sup>Pb, and <sup>7</sup>Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O<sub>3</sub> values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O<sub>3</sub> columns. Despite the fact that the three simulations show significantly different global and regional distributions of O<sub>3</sub> and CO concentrations, they show similar patterns of O<sub>3</sub>–CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O<sub>3</sub>–CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O<sub>3</sub> and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O<sub>3</sub>–CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O<sub>3</sub>–CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O<sub>3</sub> and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NO<sub><i>x</i></sub> emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O<sub>3</sub>–CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O<sub>3</sub>–CO correlations than other emissions but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O<sub>3</sub> is consumed and CO generated during the atmospheric oxidation process of isoprene under low-NO<sub><i>x</i></sub> conditions. We find that lightning NO<sub><i>x</i></sub> emissions degrade both positive correlations at mid- and high latitudes and negative correlations in the tropics because ozone production downwind of lightning NO<sub><i>x</i></sub> emissions is not directly related to the emission and transport of CO. Our study concludes that O<sub>3</sub>–CO correlations may be used effectively to constrain the sources of regional tropospheric O<sub>3</sub> in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
first_indexed 2024-04-14T02:48:25Z
format Article
id doaj.art-d212891ece2d43f5b73d69d8f599cbc1
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-14T02:48:25Z
publishDate 2017-07-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-d212891ece2d43f5b73d69d8f599cbc12022-12-22T02:16:25ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-07-01178429845210.5194/acp-17-8429-2017Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissionsH.-D. Choi0H. Liu1J. H. Crawford2D. B. Considine3D. B. Considine4D. J. Allen5B. N. Duncan6L. W. Horowitz7J. M. Rodriguez8S. E. Strahan9S. E. Strahan10L. Zhang11L. Zhang12X. Liu13M. R. Damon14M. R. Damon15S. D. Steenrod16S. D. Steenrod17National Institute of Aerospace, Hampton, VA, USANational Institute of Aerospace, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAnow at: NASA Headquarters, Washington, D.C., USAUniversity of Maryland, College Park, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USANOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USAUniversities Space Research Association, Columbia, MD, USAHarvard University, Cambridge, MA, USAnow at: Peking University, Beijing, ChinaHarvard University, Cambridge, MA, USANASA Goddard Space Flight Center, Greenbelt, MD, USAScience Systems and Applications, Inc., Lanham, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USAUniversities Space Research Association, Columbia, MD, USAWe examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone–carbon monoxide (O<sub>3</sub>–CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July–August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O<sub>3</sub>–CO correlations to input meteorological data. Model simulations of radionuclide tracers (<sup>222</sup>Rn, <sup>210</sup>Pb, and <sup>7</sup>Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O<sub>3</sub> values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O<sub>3</sub> columns. Despite the fact that the three simulations show significantly different global and regional distributions of O<sub>3</sub> and CO concentrations, they show similar patterns of O<sub>3</sub>–CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O<sub>3</sub>–CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O<sub>3</sub> and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O<sub>3</sub>–CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O<sub>3</sub>–CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O<sub>3</sub> and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NO<sub><i>x</i></sub> emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O<sub>3</sub>–CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O<sub>3</sub>–CO correlations than other emissions but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O<sub>3</sub> is consumed and CO generated during the atmospheric oxidation process of isoprene under low-NO<sub><i>x</i></sub> conditions. We find that lightning NO<sub><i>x</i></sub> emissions degrade both positive correlations at mid- and high latitudes and negative correlations in the tropics because ozone production downwind of lightning NO<sub><i>x</i></sub> emissions is not directly related to the emission and transport of CO. Our study concludes that O<sub>3</sub>–CO correlations may be used effectively to constrain the sources of regional tropospheric O<sub>3</sub> in global 3-D models, especially for those regions where convective transport of pollution plays an important role.https://www.atmos-chem-phys.net/17/8429/2017/acp-17-8429-2017.pdf
spellingShingle H.-D. Choi
H. Liu
J. H. Crawford
D. B. Considine
D. B. Considine
D. J. Allen
B. N. Duncan
L. W. Horowitz
J. M. Rodriguez
S. E. Strahan
S. E. Strahan
L. Zhang
L. Zhang
X. Liu
M. R. Damon
M. R. Damon
S. D. Steenrod
S. D. Steenrod
Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
Atmospheric Chemistry and Physics
title Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
title_full Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
title_fullStr Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
title_full_unstemmed Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
title_short Global O<sub>3</sub>–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions
title_sort global o sub 3 sub co correlations in a chemistry and transport model during july august evaluation with tes satellite observations and sensitivity to input meteorological data and emissions
url https://www.atmos-chem-phys.net/17/8429/2017/acp-17-8429-2017.pdf
work_keys_str_mv AT hdchoi globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT hliu globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT jhcrawford globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT dbconsidine globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT dbconsidine globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT djallen globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT bnduncan globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT lwhorowitz globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT jmrodriguez globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT sestrahan globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT sestrahan globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT lzhang globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT lzhang globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT xliu globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT mrdamon globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT mrdamon globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT sdsteenrod globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions
AT sdsteenrod globalosub3subcocorrelationsinachemistryandtransportmodelduringjulyaugustevaluationwithtessatelliteobservationsandsensitivitytoinputmeteorologicaldataandemissions