Summary: | As small-scale distributed energy is gradually expanding, commercialization of peer to peer(P2P) energy trading that freely exchanges energy among individuals in various countries is being commercialized, and the Microgrids (MGs) are considered to be an optimal platform for P2P energy trading. Although conducting electricity trade among individuals without going through power companies is still in its infancy, it is expected to expand gradually as the awareness of the shared economy grows and the MG spreads. Research on more efficient trading systems is needed while trading energy in MG. Therefore we propose a more efficient energy trading system that minimizes the loss in proportion to the distance of the power line when energy trading is performed in the MG. We have constructed a virtual MG environment and experimented with energy trading scenarios. As a result, when the algorithm is applied, loss in proportion to the distance is reduced by 2.495% and energy trading becomes more active. The amount of energy and the number of trades increased by 1.5 times during the energy trading process.
|