On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions

We discuss the solvability of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow>&l...

Full description

Bibliographic Details
Main Authors: Ravi P. Agarwal, Hana Al-Hutami, Bashir Ahmad
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/23/4419
_version_ 1797462747666972672
author Ravi P. Agarwal
Hana Al-Hutami
Bashir Ahmad
author_facet Ravi P. Agarwal
Hana Al-Hutami
Bashir Ahmad
author_sort Ravi P. Agarwal
collection DOAJ
description We discuss the solvability of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-difference equation of fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>, equipped with anti-periodic boundary conditions involving the first-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-difference operator. The desired results are accomplished with the aid of standard fixed point theorems. Examples are presented for illustrating the obtained results.
first_indexed 2024-03-09T17:41:03Z
format Article
id doaj.art-d2261ade154e4da0b3e303014c5beb75
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T17:41:03Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d2261ade154e4da0b3e303014c5beb752023-11-24T11:33:14ZengMDPI AGMathematics2227-73902022-11-011023441910.3390/math10234419On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary ConditionsRavi P. Agarwal0Hana Al-Hutami1Bashir Ahmad2Department of Mathematics, Texas A& M University, Kingsville, TX 78363-8202, USANonlinear Analysis and Applied Mathematics (NAAM)—Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaNonlinear Analysis and Applied Mathematics (NAAM)—Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaWe discuss the solvability of a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-difference equation of fractional order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>, equipped with anti-periodic boundary conditions involving the first-order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-difference operator. The desired results are accomplished with the aid of standard fixed point theorems. Examples are presented for illustrating the obtained results.https://www.mdpi.com/2227-7390/10/23/4419fractional Caputo fractional (<i>p</i>,<i>q</i>)-derivative(<i>p</i>,<i>q</i>)-difference operatoranti-periodic boundary conditionsexistencefixed point
spellingShingle Ravi P. Agarwal
Hana Al-Hutami
Bashir Ahmad
On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
Mathematics
fractional Caputo fractional (<i>p</i>,<i>q</i>)-derivative
(<i>p</i>,<i>q</i>)-difference operator
anti-periodic boundary conditions
existence
fixed point
title On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
title_full On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
title_fullStr On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
title_full_unstemmed On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
title_short On Solvability of Fractional (<i>p</i>,<i>q</i>)-Difference Equations with (<i>p</i>,<i>q</i>)-Difference Anti-Periodic Boundary Conditions
title_sort on solvability of fractional i p i i q i difference equations with i p i i q i difference anti periodic boundary conditions
topic fractional Caputo fractional (<i>p</i>,<i>q</i>)-derivative
(<i>p</i>,<i>q</i>)-difference operator
anti-periodic boundary conditions
existence
fixed point
url https://www.mdpi.com/2227-7390/10/23/4419
work_keys_str_mv AT ravipagarwal onsolvabilityoffractionalipiiqidifferenceequationswithipiiqidifferenceantiperiodicboundaryconditions
AT hanaalhutami onsolvabilityoffractionalipiiqidifferenceequationswithipiiqidifferenceantiperiodicboundaryconditions
AT bashirahmad onsolvabilityoffractionalipiiqidifferenceequationswithipiiqidifferenceantiperiodicboundaryconditions