Labelled dataset for Ultra-Low Temperature Freezer to aid dynamic modelling & fault detection and diagnostics

Abstract Ultra-low temperature (ULT) freezers are used to store perishable biological contents and are among the most energy-intensive equipment in laboratory buildings, biobanks, and similar settings. To ensure reliable and efficient operation, it is essential to implement data-driven fault detecti...

Full description

Bibliographic Details
Main Authors: Tao Huang, Silas Nøstvik, Peder Bacher, Jonas Kjær Jensen, Wiebke Brix Markussen, Jan Kloppenborg Møller
Format: Article
Language:English
Published: Nature Portfolio 2023-12-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-023-02808-6
Description
Summary:Abstract Ultra-low temperature (ULT) freezers are used to store perishable biological contents and are among the most energy-intensive equipment in laboratory buildings, biobanks, and similar settings. To ensure reliable and efficient operation, it is essential to implement data-driven fault detection and diagnostic algorithms, along with energy optimization techniques. This study presents labelled and long-term ULT-freezer performance dataset, the first of its kind, derived from 53 ULT freezers featuring two different control strategies. The dataset comprises high-resolution historical operation data spanning up to 10 years. More than 10 attributes are recorded from the freezing chamber and critical locations in the refrigeration systems. The dataset is labelled with regular events, such as door openings, as well as fault events obtained from 46 service reports. A scalable data pipeline, consisting of extraction, transformation, and loading processes, is developed to convert the raw data into a format ready for analysis. The dataset can be utilized to support the development of data-driven models and algorithms that advance the intelligent digital operation of ULT freezers.
ISSN:2052-4463