Global well-posedness for the radial defocusing cubic wave equation on $R^3$ and for rough data

We prove global well-posedness for the radial defocusing cubic wave equation $$displaylines{ partial_{tt} u - Delta u = -u^{3} cr u(0,x) = u_{0}(x) cr partial_{t} u(0,x) = u_{1}(x) }$$ with data $(u_0, u_1) in H^{s} imes H^{s-1}$, $1 > s >7/10$. The proof relies upon a Morawet...

Full description

Bibliographic Details
Main Author: Tristan Roy
Format: Article
Language:English
Published: Texas State University 2007-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2007/166/abstr.html
Description
Summary:We prove global well-posedness for the radial defocusing cubic wave equation $$displaylines{ partial_{tt} u - Delta u = -u^{3} cr u(0,x) = u_{0}(x) cr partial_{t} u(0,x) = u_{1}(x) }$$ with data $(u_0, u_1) in H^{s} imes H^{s-1}$, $1 > s >7/10$. The proof relies upon a Morawetz-Strauss-type inequality that allows us to control the growth of an almost conserved quantity.
ISSN:1072-6691