Granulation of Cu-Al-Fe-Ni Bronze

With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase,...

Full description

Bibliographic Details
Main Author: Pisarek B.P.
Format: Article
Language:English
Published: Polish Academy of Sciences 2014-08-01
Series:Archives of Foundry Engineering
Subjects:
Online Access:http://www.degruyter.com/view/j/afe.2014.14.issue-3/afe-2014-0063/afe-2014-0063.xml?format=INT
Description
Summary:With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness. Undertaken research to develop technology of thick-walled products (g> 6 mm) of complex aluminium bronzes. Particular attention was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by infiltration of liquid alloy of granules (composites). Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5 bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process control parameters taken a casting temperature t (°C) and the path h (mm) of free-fall of the metal droplets in the surrounding atmosphere before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was assume maximize of the product of Um*n, the percentage weight “Um” and the quantity of granules ‘n’ in the mesh fraction. The maximum value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was identified microstructure composed of phases: β and fine bainite (α+β′+β′1) and a small quantity of small precipitates κII phase. Get high microhardness bronze at the level of 323±27,9 HV0,1.
ISSN:2299-2944