Reconstructing wormhole solutions in curvature based Extended Theories of Gravity
Abstract Static and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gravitational potentials, constituted by th...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-02-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-08958-4 |
Summary: | Abstract Static and spherically symmetric wormhole solutions can be reconstructed in the framework of curvature based Extended Theories of Gravity. In particular, extensions of the General Relativity, in metric and curvature formalism give rise to modified gravitational potentials, constituted by the classical Newtonian potential and Yukawa-like corrections, whose parameters can be, in turn, gauged by the observations. Such an approach allows to reconstruct the spacetime out of the wormhole throat considering the asymptotic flatness as a physical property for the related gravitational field. Such an argument can be applied for a large class of curvature theories characterising the wormholes through the parameters of the potentials. According to this procedure, possible wormhole solutions could be observationally constrained. On the other hand, stable and traversable wormholes could be a direct probe for this class of Extended Theories of Gravity. |
---|---|
ISSN: | 1434-6044 1434-6052 |