Existence of a principal eigenvalue for the Tricomi problem

The existence of a principal eigenvalue is established for the Tricomi problem in normal domains; that is, the existence of a positive eigenvalue of minimum modulus with an associated positive eigenfunction. The argument here uses prior results of the authors on the generalized solvability in weight...

Full description

Bibliographic Details
Main Authors: Daniela Lupo, Kevin R. Payne
Format: Article
Language:English
Published: Texas State University 2000-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/conf-proc/05/l4/abstr.html
_version_ 1818776907759484928
author Daniela Lupo
Kevin R. Payne
author_facet Daniela Lupo
Kevin R. Payne
author_sort Daniela Lupo
collection DOAJ
description The existence of a principal eigenvalue is established for the Tricomi problem in normal domains; that is, the existence of a positive eigenvalue of minimum modulus with an associated positive eigenfunction. The argument here uses prior results of the authors on the generalized solvability in weighted Sobolev spaces and associated maximum/minimum principles cite{[LP2]} coupled with known results of Krein-Rutman type.
first_indexed 2024-12-18T11:20:24Z
format Article
id doaj.art-d26f8e3f8fca4d96b8f14ebe98f8c10a
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T11:20:24Z
publishDate 2000-10-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-d26f8e3f8fca4d96b8f14ebe98f8c10a2022-12-21T21:09:49ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912000-10-01Conference05173180Existence of a principal eigenvalue for the Tricomi problemDaniela LupoKevin R. PayneThe existence of a principal eigenvalue is established for the Tricomi problem in normal domains; that is, the existence of a positive eigenvalue of minimum modulus with an associated positive eigenfunction. The argument here uses prior results of the authors on the generalized solvability in weighted Sobolev spaces and associated maximum/minimum principles cite{[LP2]} coupled with known results of Krein-Rutman type.http://ejde.math.txstate.edu/conf-proc/05/l4/abstr.htmlTricomi problemmixed type equationsspectral theoryprincipal eigenvaluemaximum principle.
spellingShingle Daniela Lupo
Kevin R. Payne
Existence of a principal eigenvalue for the Tricomi problem
Electronic Journal of Differential Equations
Tricomi problem
mixed type equations
spectral theory
principal eigenvalue
maximum principle.
title Existence of a principal eigenvalue for the Tricomi problem
title_full Existence of a principal eigenvalue for the Tricomi problem
title_fullStr Existence of a principal eigenvalue for the Tricomi problem
title_full_unstemmed Existence of a principal eigenvalue for the Tricomi problem
title_short Existence of a principal eigenvalue for the Tricomi problem
title_sort existence of a principal eigenvalue for the tricomi problem
topic Tricomi problem
mixed type equations
spectral theory
principal eigenvalue
maximum principle.
url http://ejde.math.txstate.edu/conf-proc/05/l4/abstr.html
work_keys_str_mv AT danielalupo existenceofaprincipaleigenvalueforthetricomiproblem
AT kevinrpayne existenceofaprincipaleigenvalueforthetricomiproblem