Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations

This paper considers stationary autoregressive (AR) models with heavy-tailed, general GARCH (G-GARCH) or augmented GARCH noises. Limit theory for the least squares estimator (LSE) of autoregression coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" displa...

Full description

Bibliographic Details
Main Author: Eunju Hwang
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/8/816
_version_ 1797538285382270976
author Eunju Hwang
author_facet Eunju Hwang
author_sort Eunju Hwang
collection DOAJ
description This paper considers stationary autoregressive (AR) models with heavy-tailed, general GARCH (G-GARCH) or augmented GARCH noises. Limit theory for the least squares estimator (LSE) of autoregression coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>=</mo><msub><mi>ρ</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> is derived uniformly over stationary values in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, focusing on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>n</mi></msub><mo>→</mo><mn>1</mn></mrow></semantics></math></inline-formula> as sample size <i>n</i> tends to infinity. For tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> of G-GARCH innovations, asymptotic distributions of the LSEs are established, which are involved with the stable distribution. The convergence rate of the LSE depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, but no condition on the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mi>n</mi></msub></semantics></math></inline-formula> is required. It is shown that, for the tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the LSE is inconsistent, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mi>n</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow></semantics></math></inline-formula>-consistent, and for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>n</mi><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>α</mi></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-consistent. Proofs are based on the point process and the asymptotic properties in AR models with G-GARCH errors. However, this present work provides a bridge between pure stationary and unit-root processes. This paper extends the existing uniform limit theory with three issues: the errors have conditional heteroscedastic variance; the errors are heavy-tailed with tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>; and no restriction on the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mi>n</mi></msub></semantics></math></inline-formula> is necessary.
first_indexed 2024-03-10T12:29:20Z
format Article
id doaj.art-d2720711277346e892faeb8e5866197f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:29:20Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d2720711277346e892faeb8e5866197f2023-11-21T14:49:31ZengMDPI AGMathematics2227-73902021-04-019881610.3390/math9080816Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH InnovationsEunju Hwang0Department of Applied Statistics, Gachon University, Seongnam 13120, KoreaThis paper considers stationary autoregressive (AR) models with heavy-tailed, general GARCH (G-GARCH) or augmented GARCH noises. Limit theory for the least squares estimator (LSE) of autoregression coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ρ</mi><mo>=</mo><msub><mi>ρ</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> is derived uniformly over stationary values in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, focusing on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mi>n</mi></msub><mo>→</mo><mn>1</mn></mrow></semantics></math></inline-formula> as sample size <i>n</i> tends to infinity. For tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula> of G-GARCH innovations, asymptotic distributions of the LSEs are established, which are involved with the stable distribution. The convergence rate of the LSE depends on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula>, but no condition on the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mi>n</mi></msub></semantics></math></inline-formula> is required. It is shown that, for the tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>, the LSE is inconsistent, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">log</mo><mi>n</mi><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow></semantics></math></inline-formula>-consistent, and for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>2</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>n</mi><mrow><mn>1</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>α</mi></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msubsup><mi>ρ</mi><mi>n</mi><mn>2</mn></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula>-consistent. Proofs are based on the point process and the asymptotic properties in AR models with G-GARCH errors. However, this present work provides a bridge between pure stationary and unit-root processes. This paper extends the existing uniform limit theory with three issues: the errors have conditional heteroscedastic variance; the errors are heavy-tailed with tail index <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>4</mn><mo>)</mo></mrow></semantics></math></inline-formula>; and no restriction on the rate of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ρ</mi><mi>n</mi></msub></semantics></math></inline-formula> is necessary.https://www.mdpi.com/2227-7390/9/8/816autoregressionaugmented GARCHheavy-tailedlimit theory
spellingShingle Eunju Hwang
Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
Mathematics
autoregression
augmented GARCH
heavy-tailed
limit theory
title Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
title_full Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
title_fullStr Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
title_full_unstemmed Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
title_short Limit Theory for Stationary Autoregression with Heavy-Tailed Augmented GARCH Innovations
title_sort limit theory for stationary autoregression with heavy tailed augmented garch innovations
topic autoregression
augmented GARCH
heavy-tailed
limit theory
url https://www.mdpi.com/2227-7390/9/8/816
work_keys_str_mv AT eunjuhwang limittheoryforstationaryautoregressionwithheavytailedaugmentedgarchinnovations