INEQUALITIES PERTAINING TO RATIONAL FUNCTIONS WITH PRESCRIBED POLES
Let \(\Re_n\) be the set of all rational functions of the type \(r(z) = p(z)/w(z),\) where \(p(z)\) is a polynomial of degree at most \(n\) and \(w(z) = \prod_{j=1}^{n}(z-a_j)\), \(|a_j|>1\) for \(1\leq j\leq n\). In this paper, we set up some results for rational functions with fixed poles and...
Main Authors: | Nisar Ahmad Rather, Mohmmad Shafi Wani, Ishfaq Dar |
---|---|
Format: | Article |
Language: | English |
Published: |
Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin.
2022-12-01
|
Series: | Ural Mathematical Journal |
Subjects: | |
Online Access: | https://umjuran.ru/index.php/umj/article/view/455 |
Similar Items
-
GENERALIZATIONS OF CERTAIN WELL-KNOWN INEQUALITIES FOR RATIONAL FUNCTIONS
by: M. Y. Mir, et al.
Published: (2022-12-01) -
Markov and Bernstein type inequalities for polynomials
by: Mohapatra RN, et al.
Published: (1999-01-01) -
INEQUALITIES FOR A CLASS OF MEROMORPHIC FUNCTIONS WHOSE ZEROS ARE WITHIN OR OUTSIDE A GIVEN DISK
by: Mohd Yousf Mir, et al.
Published: (2023-07-01) -
Integration of Rational Functions
by: Laxmi Rathour, et al.
Published: (2023-08-01) -
The Bernstein inequality for certain weighted algebraic and trigonometric polynomials
by: Kilgore Theodore
Published: (2002-01-01)