Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of ε-Caprolactone

The bulk ring-opening polymerization (ROP) of ε-caprolactone using phosphazene-containing porous polymeric material (HPCP) has been studied at high reaction temperatures (130–150 °C). HPCP in conjunction with benzyl alcohol as an initiator induced the living ROP of ε-caprolactone, affording polyeste...

Full description

Bibliographic Details
Main Authors: Yuliya A. Piskun, Evgenii A. Ksendzov, Anastasiya V. Resko, Mikhail A. Soldatov, Peter Timashev, Hongzhi Liu, Irina V. Vasilenko, Sergei V. Kostjuk
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/5/1291
Description
Summary:The bulk ring-opening polymerization (ROP) of ε-caprolactone using phosphazene-containing porous polymeric material (HPCP) has been studied at high reaction temperatures (130–150 °C). HPCP in conjunction with benzyl alcohol as an initiator induced the living ROP of ε-caprolactone, affording polyesters with a controlled molecular weight up to 6000 g mol<sup>−1</sup> and moderate polydispersity (Ð~1.5) under optimized conditions ([BnOH]/[CL] = 50; HPCP: 0.63 mM; 150 °C). Poly(ε-caprolactone)s with higher molecular weight (up to M<sub>n</sub> = 14,000 g mol<sup>−1</sup>, Ð~1.9) were obtained at a lower temperature, at 130 °C. Due to its high thermal and chemical stability, HPCP can be reused for at least three consecutive cycles without a significant decrease in the catalyst efficiency. The tentative mechanism of the HPCP-catalyzed ROP of ε-caprolactone, the key stage of which consists of the activation of the initiator through the basic sites of the catalyst, was proposed.
ISSN:2073-4360