Boundary entropy of integrable perturbed SU (2) k WZNW

Abstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a s...

Full description

Bibliographic Details
Main Authors: Dinh-Long Vu, Ivan Kostov, Didina Serban
Format: Article
Language:English
Published: SpringerOpen 2019-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP08(2019)154
_version_ 1818449266439356416
author Dinh-Long Vu
Ivan Kostov
Didina Serban
author_facet Dinh-Long Vu
Ivan Kostov
Didina Serban
author_sort Dinh-Long Vu
collection DOAJ
description Abstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a specific boundary condition. The main problem we encounter is that in case of non-diagonal scattering the boundary entropy is infinite. We show that this infinity can be cured by a subtraction. The difference of the boundary entropies in the UV and in the IR limits is finite, and matches the known g-functions for the unperturbed SU (2) k WZNW model for even values of the level.
first_indexed 2024-12-14T20:32:41Z
format Article
id doaj.art-d299b124f0b74c0eae34054268a51f3e
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-14T20:32:41Z
publishDate 2019-08-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-d299b124f0b74c0eae34054268a51f3e2022-12-21T22:48:30ZengSpringerOpenJournal of High Energy Physics1029-84792019-08-012019813010.1007/JHEP08(2019)154Boundary entropy of integrable perturbed SU (2) k WZNWDinh-Long Vu0Ivan Kostov1Didina Serban2Institut de Physique ThéoriqueInstitut de Physique ThéoriqueInstitut de Physique ThéoriqueAbstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a specific boundary condition. The main problem we encounter is that in case of non-diagonal scattering the boundary entropy is infinite. We show that this infinity can be cured by a subtraction. The difference of the boundary entropies in the UV and in the IR limits is finite, and matches the known g-functions for the unperturbed SU (2) k WZNW model for even values of the level.http://link.springer.com/article/10.1007/JHEP08(2019)154Bethe AnsatzBoundary Quantum Field TheoryIntegrable Field Theories
spellingShingle Dinh-Long Vu
Ivan Kostov
Didina Serban
Boundary entropy of integrable perturbed SU (2) k WZNW
Journal of High Energy Physics
Bethe Ansatz
Boundary Quantum Field Theory
Integrable Field Theories
title Boundary entropy of integrable perturbed SU (2) k WZNW
title_full Boundary entropy of integrable perturbed SU (2) k WZNW
title_fullStr Boundary entropy of integrable perturbed SU (2) k WZNW
title_full_unstemmed Boundary entropy of integrable perturbed SU (2) k WZNW
title_short Boundary entropy of integrable perturbed SU (2) k WZNW
title_sort boundary entropy of integrable perturbed su 2 k wznw
topic Bethe Ansatz
Boundary Quantum Field Theory
Integrable Field Theories
url http://link.springer.com/article/10.1007/JHEP08(2019)154
work_keys_str_mv AT dinhlongvu boundaryentropyofintegrableperturbedsu2kwznw
AT ivankostov boundaryentropyofintegrableperturbedsu2kwznw
AT didinaserban boundaryentropyofintegrableperturbedsu2kwznw