Boundary entropy of integrable perturbed SU (2) k WZNW
Abstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a s...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP08(2019)154 |
_version_ | 1818449266439356416 |
---|---|
author | Dinh-Long Vu Ivan Kostov Didina Serban |
author_facet | Dinh-Long Vu Ivan Kostov Didina Serban |
author_sort | Dinh-Long Vu |
collection | DOAJ |
description | Abstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a specific boundary condition. The main problem we encounter is that in case of non-diagonal scattering the boundary entropy is infinite. We show that this infinity can be cured by a subtraction. The difference of the boundary entropies in the UV and in the IR limits is finite, and matches the known g-functions for the unperturbed SU (2) k WZNW model for even values of the level. |
first_indexed | 2024-12-14T20:32:41Z |
format | Article |
id | doaj.art-d299b124f0b74c0eae34054268a51f3e |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-12-14T20:32:41Z |
publishDate | 2019-08-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-d299b124f0b74c0eae34054268a51f3e2022-12-21T22:48:30ZengSpringerOpenJournal of High Energy Physics1029-84792019-08-012019813010.1007/JHEP08(2019)154Boundary entropy of integrable perturbed SU (2) k WZNWDinh-Long Vu0Ivan Kostov1Didina Serban2Institut de Physique ThéoriqueInstitut de Physique ThéoriqueInstitut de Physique ThéoriqueAbstract We apply the recently developped analytical methods for computing the boundary entropy, or the g-function, in integrable theories with non-diagonal scattering. We consider the particular case of the current-perturbed SU (2) k WZNW model with boundary and compute the boundary entropy for a specific boundary condition. The main problem we encounter is that in case of non-diagonal scattering the boundary entropy is infinite. We show that this infinity can be cured by a subtraction. The difference of the boundary entropies in the UV and in the IR limits is finite, and matches the known g-functions for the unperturbed SU (2) k WZNW model for even values of the level.http://link.springer.com/article/10.1007/JHEP08(2019)154Bethe AnsatzBoundary Quantum Field TheoryIntegrable Field Theories |
spellingShingle | Dinh-Long Vu Ivan Kostov Didina Serban Boundary entropy of integrable perturbed SU (2) k WZNW Journal of High Energy Physics Bethe Ansatz Boundary Quantum Field Theory Integrable Field Theories |
title | Boundary entropy of integrable perturbed SU (2) k WZNW |
title_full | Boundary entropy of integrable perturbed SU (2) k WZNW |
title_fullStr | Boundary entropy of integrable perturbed SU (2) k WZNW |
title_full_unstemmed | Boundary entropy of integrable perturbed SU (2) k WZNW |
title_short | Boundary entropy of integrable perturbed SU (2) k WZNW |
title_sort | boundary entropy of integrable perturbed su 2 k wznw |
topic | Bethe Ansatz Boundary Quantum Field Theory Integrable Field Theories |
url | http://link.springer.com/article/10.1007/JHEP08(2019)154 |
work_keys_str_mv | AT dinhlongvu boundaryentropyofintegrableperturbedsu2kwznw AT ivankostov boundaryentropyofintegrableperturbedsu2kwznw AT didinaserban boundaryentropyofintegrableperturbedsu2kwznw |