Ligand Relay for Nickel‐Catalyzed Decarbonylative Alkylation of Aroyl Chlorides

Abstract Transition metal‐catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late‐stage applications. The development of the selective decarbonylative of carboxylic acid derivatives,...

Full description

Bibliographic Details
Main Authors: Tian‐Zhang Wang, Yu‐Qiu Guan, Tian‐Yu Zhang, Yu‐Feng Liang
Format: Article
Language:English
Published: Wiley 2024-03-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202306923
Description
Summary:Abstract Transition metal‐catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late‐stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel‐catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross‐electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late‐stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.
ISSN:2198-3844