Physiological markers of stress susceptibility in maize and triticale under different soil compactions and/or soil water contents
Differences between two maize and two triticale genotypes grown in low soil compaction (LSC), moderate soil compaction (MSC) and severe soil compaction (SSC) and with a limited (D) or excess (W) soil water content were observed as a decrease in shoot (S) and root (R) biomass, leaf greening (SPAD) an...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2017-01-01
|
Series: | Journal of Plant Interactions |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/17429145.2017.1370143 |
Summary: | Differences between two maize and two triticale genotypes grown in low soil compaction (LSC), moderate soil compaction (MSC) and severe soil compaction (SSC) and with a limited (D) or excess (W) soil water content were observed as a decrease in shoot (S) and root (R) biomass, leaf greening (SPAD) and increase in membrane injury (LI), root and leaf water potential (ψ), photosynthesis (Pn), transpiration (E) and stomata conductance (gS). Close correlations between ψL and ψR, and between differences ψL and ψR (Δψ) were found. Drought or waterlogging with LSC conditions in both maize genotypes resulted in higher WUE than in control plants (LSC C), but under the SSC WUE declined. However, for triticale differences in WUE, between treatments were small and insignificant. In general, changes in markers were greater for genotypes sensitive to the soil compaction (Ankora, CHD-12) than in resistant ones (Tina, CHD-247) and were higher in seedlings grown under SSC conditions. Abbreviations: ψR, ψL: root and leaf water potential; C: control; D: drought; E: transpiration rate; FWC: field water capacity; gS: stomatal conductance; LSC, MSC, SSC: low, moderate and severe soil compaction; Pn: photosynthesis rate; W: waterlogging |
---|---|
ISSN: | 1742-9145 1742-9153 |