Hyperspectral Characteristics of Oil Sand, Part 2: Prediction of Froth Characteristics from Measurements of Froth

This is the second part of a study of predictive models of oil sand ore and froth characteristics using infrared hyperspectral data as a potential new means for process control. In Alberta, Canada, bitumen in shallow oil sands deposits is accessed by surface mining and then extracted from ore using...

Full description

Bibliographic Details
Main Authors: Benoit Rivard, Jilu Feng, Derek Russell, Vivek Bushan, Michael Lipsett
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/10/12/1137
Description
Summary:This is the second part of a study of predictive models of oil sand ore and froth characteristics using infrared hyperspectral data as a potential new means for process control. In Alberta, Canada, bitumen in shallow oil sands deposits is accessed by surface mining and then extracted from ore using flotation processes. The ore displays variability in the clay, bitumen, and fines content and this variability affects the separability and product quality in flotation units. Flotation experiments were performed on a set of ore samples of different types to generate froth and determine the ore processability (e.g., separation performance) and froth characteristics (bitumen and solids content, fines distribution). We show that point spectra and spectral imagery of good quality can be acquired rapidly (<1 s and <15 s, respectively) and these capture spectral features diagnostic of bitumen and solids. Ensuing models can predict the solids/bitumen (r<sup>2</sup> = 0.88) and the %fines and ultrafines (particle passing at 3.9 and 0.5 µm) content of froth (r<sup>2</sup> = 0.8 and 0.9, respectively). The latter model could be used to reject froth with a high solids content. Alternately, the strength of the illite-smectite absorption observed in froth could be used to retain all the samples above a pre-defined processability. Given that point spectrometers can currently be acquired for less than half the cost of an imaging system, we recommend the use of the former for future trials in operating environments.
ISSN:2075-163X