Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry

<p>Understanding the variations in past ocean carbonate chemistry is critical to elucidating the role of the oceans in balancing the global carbon cycle. The fossil shells from marine calcifiers present in the sedimentary record are widely applied as past ocean carbon cycle proxies. However, t...

Full description

Bibliographic Details
Main Authors: A. Gerotto, H. Zhang, R. H. Nagai, H. M. Stoll, R. C. L. Figueira, C. Liu, I. Hernández-Almeida
Format: Article
Language:English
Published: Copernicus Publications 2023-05-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/20/1725/2023/bg-20-1725-2023.pdf
Description
Summary:<p>Understanding the variations in past ocean carbonate chemistry is critical to elucidating the role of the oceans in balancing the global carbon cycle. The fossil shells from marine calcifiers present in the sedimentary record are widely applied as past ocean carbon cycle proxies. However, the interpretation of these records can be challenging due to the complex physiological and ecological response to the carbonate system during an organisms' life cycle and the potential for preservation at the seafloor. Here we present a new dissolution proxy based on the morphological attributes of coccolithophores from the Noëlaerhabdaceae family (<i>Emiliania huxleyi</i> <span class="inline-formula">&gt;</span> 2 <span class="inline-formula">µ</span>m, and small <i>Gephyrocapsa</i> spp.). To evaluate the influences of coccolithophore calcification and coccolith preservation on fossil morphology, we measured morphological attributes, mass, length, thickness, and shape factor (ks) of coccoliths in a laboratory dissolution experiment and surface sediment samples from the South China Sea. The coccolith morphological data in surface sediments were also analyzed with environment settings, namely surface temperature, nutrients, pH, chlorophyll <span class="inline-formula"><i>a</i></span> concentration, and carbonate saturation of bottom water by a redundancy analysis. Statistical analysis indicates that carbonate saturation of the deep ocean explains the highest proportion of variation in the morphological data instead of the environmental variables of the surface ocean. Moreover, the dissolution trajectory in the ks vs. length of coccoliths is comparable between natural samples and laboratory dissolution experiments, emphasizing the importance of carbonate saturation on fossil coccolith morphology. However, the mean ks alone cannot fully explain the main variations observed in our work. We propose that the normalized ks variation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">σ</mi><mspace linebreak="nobreak" width="0.125em"/><mo>/</mo><mspace linebreak="nobreak" width="0.125em"/><mi mathvariant="normal">ks</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6876e7c9ebe9eff0713ec99312c480e0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-20-1725-2023-ie00001.svg" width="29pt" height="14pt" src="bg-20-1725-2023-ie00001.png"/></svg:svg></span></span>), which is the ratio between the standard deviation of ks (<span class="inline-formula"><i>σ</i></span>) and the mean ks, could reflect different degrees of dissolution and size-selective dissolution, influenced by the assemblage composition. Applied together with the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">σ</mi><mspace width="0.125em" linebreak="nobreak"/><mo>/</mo><mspace width="0.125em" linebreak="nobreak"/><mi mathvariant="normal">ks</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="82a57a3c576a34b62f23894f25e1b6c5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-20-1725-2023-ie00002.svg" width="29pt" height="14pt" src="bg-20-1725-2023-ie00002.png"/></svg:svg></span></span> ratio, the ks factor of fossil coccoliths in deep ocean sediments could be a potential proxy for a quantitative reconstruction of past carbonate dissolution dynamics.</p>
ISSN:1726-4170
1726-4189