A sapphire monolithic differential accelerometer as core sensor for gravity gradiometric geophysical instrumentation
Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Istituto Nazionale di Geofisica e Vulcanologia (INGV)
2006-06-01
|
Series: | Annals of Geophysics |
Subjects: | |
Online Access: | http://www.annalsofgeophysics.eu/index.php/annals/article/view/3111 |
Summary: | Gradiometric gravimetry is a survey technique widely used in geological structure investigation. This work demonstrates the feasibility of a new class of low frequency accelerometers for geodynamics studies and space applications. We present the design features of a new low noise single-axis differential accelerometer; the sensor is suitable to be used in a Gravity Gradiometer (GG) system for land geophysical survey and gravity gradient measurements. A resolution of 1 Eötvös (1 Eö=10?9s?2) at one sample per second is achievable in a compact, lightweight (less than 2 kg) portable instrument, operating at room temperature. The basic components of the sensor are two identical rigidly connected accelerometers separated by a 15-cm baseline vector and the useful signal is extracted as the subtraction of the two outputs, by means of an interferometric microwave readout system. The structure will be engraved in a monocrystal of sapphire by means of Computer-Numerically-Controlled (CNC) ultrasonic machining: the material was chosen because of its unique mix of outstanding mechanical and dielectric properties. |
---|---|
ISSN: | 1593-5213 2037-416X |