Developing Relative Humidity and Temperature Corrections for Low-Cost Sensors Using Machine Learning
Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors ar...
المؤلفون الرئيسيون: | Ivan Vajs, Dejan Drajic, Nenad Gligoric, Ilija Radovanovic, Ivan Popovic |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2021-05-01
|
سلاسل: | Sensors |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/1424-8220/21/10/3338 |
مواد مشابهة
-
Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring
حسب: Ivan Vajs, وآخرون
منشور في: (2023-03-01) -
COVID-19 Lockdown in Belgrade: Impact on Air Pollution and Evaluation of a Neural Network Model for the Correction of Low-Cost Sensors’ Measurements
حسب: Ivan Vajs, وآخرون
منشور في: (2021-11-01) -
Building Low-Cost Sensing Infrastructure for Air Quality Monitoring in Urban Areas Based on Fog Computing
حسب: Ivan Popović, وآخرون
منشور في: (2022-01-01) -
Evaluation and Correction of PurpleAir Temperature and Relative Humidity Measurements
حسب: Evan Couzo, وآخرون
منشور في: (2024-03-01) -
A Low-Cost Calibration Method for Temperature, Relative Humidity, and Carbon Dioxide Sensors Used in Air Quality Monitoring Systems
حسب: Rosa Amalia González Rivero, وآخرون
منشور في: (2023-01-01)