Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential

Abstract In this paper, the nonlinear wave equation with singular Legendre potential utt−uxx+VL(x)u+mu+perturbation=0 $$ u_{tt}-u_{xx}+V_{L}(x)u + mu + \mathit{perturbation}=0 $$ subject to certain boundary conditions is considered, where m is a positive real number and VL(x)=−12−14tan2x $V_{L}(x)=-...

Full description

Bibliographic Details
Main Authors: Guanghua Shi, Dongfeng Yan
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1225-x
_version_ 1819015745123647488
author Guanghua Shi
Dongfeng Yan
author_facet Guanghua Shi
Dongfeng Yan
author_sort Guanghua Shi
collection DOAJ
description Abstract In this paper, the nonlinear wave equation with singular Legendre potential utt−uxx+VL(x)u+mu+perturbation=0 $$ u_{tt}-u_{xx}+V_{L}(x)u + mu + \mathit{perturbation}=0 $$ subject to certain boundary conditions is considered, where m is a positive real number and VL(x)=−12−14tan2x $V_{L}(x)=-\frac{1}{2}-\frac{1}{4}\tan ^{2} {x}$, x∈(−π2,π2) $x\in (-\frac{\pi }{2},\frac{\pi }{2})$. By means of the partial Birkhoff normal form technique and infinite-dimensional Kolmogorov–Arnold–Moser theory, it is proved that, for every m∈R+∖{14} $m\in \mathbb{R}_{+}\setminus \{\frac{1}{4}\}$, the above equation admits plenty of quasi-periodic solutions with three frequencies.
first_indexed 2024-12-21T02:36:37Z
format Article
id doaj.art-d2d382bc973e4743a05f6285c1b6b7ee
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-21T02:36:37Z
publishDate 2019-06-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-d2d382bc973e4743a05f6285c1b6b7ee2022-12-21T19:18:47ZengSpringerOpenBoundary Value Problems1687-27702019-06-012019111810.1186/s13661-019-1225-xQuasi-periodic solutions for nonlinear wave equation with singular Legendre potentialGuanghua Shi0Dongfeng Yan1College of Mathematics and Computer Science, Hunan Normal UniversitySchool of Mathematics and Statistics, Zhengzhou UniversityAbstract In this paper, the nonlinear wave equation with singular Legendre potential utt−uxx+VL(x)u+mu+perturbation=0 $$ u_{tt}-u_{xx}+V_{L}(x)u + mu + \mathit{perturbation}=0 $$ subject to certain boundary conditions is considered, where m is a positive real number and VL(x)=−12−14tan2x $V_{L}(x)=-\frac{1}{2}-\frac{1}{4}\tan ^{2} {x}$, x∈(−π2,π2) $x\in (-\frac{\pi }{2},\frac{\pi }{2})$. By means of the partial Birkhoff normal form technique and infinite-dimensional Kolmogorov–Arnold–Moser theory, it is proved that, for every m∈R+∖{14} $m\in \mathbb{R}_{+}\setminus \{\frac{1}{4}\}$, the above equation admits plenty of quasi-periodic solutions with three frequencies.http://link.springer.com/article/10.1186/s13661-019-1225-xKolmogorov–Arnold–Moser theoryQuasi-periodic solutionsSingular differential operatorBirkhoff normal form
spellingShingle Guanghua Shi
Dongfeng Yan
Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
Boundary Value Problems
Kolmogorov–Arnold–Moser theory
Quasi-periodic solutions
Singular differential operator
Birkhoff normal form
title Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
title_full Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
title_fullStr Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
title_full_unstemmed Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
title_short Quasi-periodic solutions for nonlinear wave equation with singular Legendre potential
title_sort quasi periodic solutions for nonlinear wave equation with singular legendre potential
topic Kolmogorov–Arnold–Moser theory
Quasi-periodic solutions
Singular differential operator
Birkhoff normal form
url http://link.springer.com/article/10.1186/s13661-019-1225-x
work_keys_str_mv AT guanghuashi quasiperiodicsolutionsfornonlinearwaveequationwithsingularlegendrepotential
AT dongfengyan quasiperiodicsolutionsfornonlinearwaveequationwithsingularlegendrepotential