Drift Field Implementation in Large Pinned Photodiodes for Improved Charge Transfer Speed

We present a methodology for generating built-in drift fields in large photodiodes. With the aid of TCAD we demonstrate how non-uniform doping profiles can be implemented in a standard CMOS process using a single additional mask and controlled using the implant conditions and mask geometry. We demon...

Full description

Bibliographic Details
Main Authors: Donald B. Hondongwa, Eric R. Fossum
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8320515/
Description
Summary:We present a methodology for generating built-in drift fields in large photodiodes. With the aid of TCAD we demonstrate how non-uniform doping profiles can be implemented in a standard CMOS process using a single additional mask and controlled using the implant conditions and mask geometry. We demonstrate that the resulting doping profile creates a built-in drift field and simulates the effect of the drift field on the charge transfer speed. We show that implementing a drift field can improve charge transfer characteristics of the photodiode.
ISSN:2168-6734