Spontaneously implemented spatial coherence in vertical-cavity surface-emitting laser dot array

Abstract We report a self-induced spatially-coherent dot array consisting of fourteen units of vertical-cavity surface-emitting modes that exhibit spatially uniform spectra. A 47.5 µm total beam width and 0.5° narrow emission are achieved using an oblong cavity enclosed with a flat top mirror, cylin...

Full description

Bibliographic Details
Main Authors: Tatsushi Hamaguchi, Tomohiro Makino, Kentaro Hayashi, Jared A. Kearns, Maho Ohara, Maiko Ito, Noriko Kobayashi, Shouetsu Nagane, Koichi Sato, Yuki Nakamura, Yukio Hoshina, Tatsurou Jyoukawa, Takumi Watanabe, Yuichiro Kikuchi, Eiji Nakayama, Rintaro Koda, Noriyuki Futagawa
Format: Article
Language:English
Published: Nature Portfolio 2022-12-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-26257-0
Description
Summary:Abstract We report a self-induced spatially-coherent dot array consisting of fourteen units of vertical-cavity surface-emitting modes that exhibit spatially uniform spectra. A 47.5 µm total beam width and 0.5° narrow emission are achieved using an oblong cavity enclosed with a flat top mirror, cylindrically curved bottom mirror, and side facet. Notably, terminating the side of the cavity with a perpendicular facet enhances the horizontal propagation, which couples with the vertical resonance in each dot, similar to the case of master lasers in injection-locked lasers that delocalize the modes. Conventional semiconductor lasers, edge-emitting lasers, and vertical-cavity surface-emitting lasers have a Fabry–Pérot cavity; furthermore, emission and resonance are in identical directions, limiting the beam width to micrometers. Though the present structure has the same scheme of propagation, the right-angled facet synchronizes the modes and drastically expands the beam width.
ISSN:2045-2322