Hydrological daily rainfall-runoff simulation with BTOPMC model and comparison with Xin'anjiang model

A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge...

Full description

Bibliographic Details
Main Authors: Hong-jun Bao, Li-li Wang, Zhi-jia Li, Lin-na Zhao, Guo-ping Zhang
Format: Article
Language:English
Published: Elsevier 2010-06-01
Series:Water Science and Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1674237015301058
Description
Summary:A grid-based distributed hydrological model, the Block-wise use of TOPMODEL (BTOPMC), which was developed from the original TOPMODEL, was used for hydrological daily rainfall-runoff simulation. In the BTOPMC model, the runoff is explicitly calculated on a cell-by-cell basis, and the Muskingum-Cunge flow concentration method is used. In order to test the model's applicability, the BTOPMC model and the Xin'anjiang model were applied to the simulation of a humid watershed and a semi-humid to semi-arid watershed in China. The model parameters were optimized with the Shuffle Complex Evolution (SCE-UA) method. Results show that both models can effectively simulate the daily hydrograph in humid watersheds, but that the BTOPMC model performs poorly in semi-humid to semi-arid watersheds. The excess-infiltration mechanism should be incorporated into the BTOPMC model to broaden the model's applicability.
ISSN:1674-2370