Algorithms for Computing the Triplet and Quartet Distances for Binary and General Trees

Distance measures between trees are useful for comparing trees in a systematic manner, and several different distance measures have been proposed. The triplet and quartet distances, for rooted and unrooted trees, respectively, are defined as the number of subsets of three or four leaves, respectivel...

Full description

Bibliographic Details
Main Authors: Thomas Mailund, Christian N. S. Pedersen, Rolf Fagerberg, Gerth Stølting Brodal, Morten K. Holt, Jens Johansen, Andreas Sand
Format: Article
Language:English
Published: MDPI AG 2013-09-01
Series:Biology
Subjects:
Online Access:http://www.mdpi.com/2079-7737/2/4/1189
Description
Summary:Distance measures between trees are useful for comparing trees in a systematic manner, and several different distance measures have been proposed. The triplet and quartet distances, for rooted and unrooted trees, respectively, are defined as the number of subsets of three or four leaves, respectively, where the topologies of the induced subtrees differ. These distances can trivially be computed by explicitly enumerating all sets of three or four leaves and testing if the topologies are different, but this leads to time complexities at least of the order n3 or n4 just for enumerating the sets. The different topologies can be counte dimplicitly, however, and in this paper, we review a series of algorithmic improvements that have been used during the last decade to develop more efficient algorithms by exploiting two different strategies for this; one based on dynamic programming and another based oncoloring leaves in one tree and updating a hierarchical decomposition of the other.
ISSN:2079-7737