TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020
<p>TROPOspheric Monitoring Instrument (TROPOMI) near-ultraviolet (near-UV) radiances are used as input to an inversion algorithm that simultaneously retrieves aerosol optical depth (AOD), single-scattering albedo (SSA), and the qualitative UV aerosol index (UVAI). We first present the TROPOMI...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-12-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/13/6789/2020/amt-13-6789-2020.pdf |
_version_ | 1818594538940268544 |
---|---|
author | O. Torres H. Jethva C. Ahn G. Jaross D. G. Loyola |
author_facet | O. Torres H. Jethva C. Ahn G. Jaross D. G. Loyola |
author_sort | O. Torres |
collection | DOAJ |
description | <p>TROPOspheric Monitoring Instrument (TROPOMI) near-ultraviolet (near-UV) radiances are used as input to an inversion
algorithm that simultaneously retrieves aerosol optical depth (AOD),
single-scattering albedo (SSA), and the qualitative UV aerosol index
(UVAI). We first present the TROPOMI aerosol algorithm (TropOMAER), an
adaptation of the currently operational OMI near-UV (OMAERUV and OMACA)
inversion schemes that takes advantage of TROPOMI's unprecedented fine
spatial resolution at UV wavelengths and the availability of ancillary
aerosol-related information to derive aerosol loading in cloud-free and
above-cloud aerosols scenes. TROPOMI-retrieved AOD and SSA products are
evaluated by direct comparison to sun-photometer measurements. A parallel
evaluation analysis of OMAERUV and TropOMAER aerosol products is carried out
to separately identify the effect of improved instrument capabilities and
algorithm upgrades. Results show TropOMAER improved levels of agreement with
respect to those obtained with the heritage coarser-resolution sensor. OMI
and TROPOMI aerosol products are also intercompared at regional daily and
monthly temporal scales, as well as globally at monthly and seasonal scales.
We then use TropOMAER aerosol retrieval results to discuss the US Northwest
and British Columbia 2018 wildfire season, the 2019 biomass burning season
in the Amazon Basin, and the unprecedented January 2020 fire season in
Australia that injected huge amounts of carbonaceous aerosols in the
stratosphere.</p> |
first_indexed | 2024-12-16T11:01:43Z |
format | Article |
id | doaj.art-d310a7c63a9b459aaad449c612968c30 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-16T11:01:43Z |
publishDate | 2020-12-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-d310a7c63a9b459aaad449c612968c302022-12-21T22:33:59ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-12-01136789680610.5194/amt-13-6789-2020TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020O. Torres0H. Jethva1C. Ahn2G. Jaross3D. G. Loyola4NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAUniversities Space Research Association USRA/GESTAR, Columbia, MD, USAScience Systems and Applications Inc., Lanham, MD, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USAGerman Aerospace Center (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 82234 Weßling, Germany<p>TROPOspheric Monitoring Instrument (TROPOMI) near-ultraviolet (near-UV) radiances are used as input to an inversion algorithm that simultaneously retrieves aerosol optical depth (AOD), single-scattering albedo (SSA), and the qualitative UV aerosol index (UVAI). We first present the TROPOMI aerosol algorithm (TropOMAER), an adaptation of the currently operational OMI near-UV (OMAERUV and OMACA) inversion schemes that takes advantage of TROPOMI's unprecedented fine spatial resolution at UV wavelengths and the availability of ancillary aerosol-related information to derive aerosol loading in cloud-free and above-cloud aerosols scenes. TROPOMI-retrieved AOD and SSA products are evaluated by direct comparison to sun-photometer measurements. A parallel evaluation analysis of OMAERUV and TropOMAER aerosol products is carried out to separately identify the effect of improved instrument capabilities and algorithm upgrades. Results show TropOMAER improved levels of agreement with respect to those obtained with the heritage coarser-resolution sensor. OMI and TROPOMI aerosol products are also intercompared at regional daily and monthly temporal scales, as well as globally at monthly and seasonal scales. We then use TropOMAER aerosol retrieval results to discuss the US Northwest and British Columbia 2018 wildfire season, the 2019 biomass burning season in the Amazon Basin, and the unprecedented January 2020 fire season in Australia that injected huge amounts of carbonaceous aerosols in the stratosphere.</p>https://amt.copernicus.org/articles/13/6789/2020/amt-13-6789-2020.pdf |
spellingShingle | O. Torres H. Jethva C. Ahn G. Jaross D. G. Loyola TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 Atmospheric Measurement Techniques |
title | TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 |
title_full | TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 |
title_fullStr | TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 |
title_full_unstemmed | TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 |
title_short | TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020 |
title_sort | tropomi aerosol products evaluation and observations of synoptic scale carbonaceous aerosol plumes during 2018 2020 |
url | https://amt.copernicus.org/articles/13/6789/2020/amt-13-6789-2020.pdf |
work_keys_str_mv | AT otorres tropomiaerosolproductsevaluationandobservationsofsynopticscalecarbonaceousaerosolplumesduring20182020 AT hjethva tropomiaerosolproductsevaluationandobservationsofsynopticscalecarbonaceousaerosolplumesduring20182020 AT cahn tropomiaerosolproductsevaluationandobservationsofsynopticscalecarbonaceousaerosolplumesduring20182020 AT gjaross tropomiaerosolproductsevaluationandobservationsofsynopticscalecarbonaceousaerosolplumesduring20182020 AT dgloyola tropomiaerosolproductsevaluationandobservationsofsynopticscalecarbonaceousaerosolplumesduring20182020 |