Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault
To clarify the understanding and analysis of arc molten marks in electrical faults of aluminum alloy wires, this paper simulates overcurrent faults of aluminum alloy wires at currents of 128 A–224 A and uses thermogravimetry-differential scanning calorimetry (TG-DSC), optical microscope (OM), scanni...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/15/4133 |
_version_ | 1797525409989918720 |
---|---|
author | Xueyan Xu Zhijin Yu Yang Li Weifeng Wang Lan Xu |
author_facet | Xueyan Xu Zhijin Yu Yang Li Weifeng Wang Lan Xu |
author_sort | Xueyan Xu |
collection | DOAJ |
description | To clarify the understanding and analysis of arc molten marks in electrical faults of aluminum alloy wires, this paper simulates overcurrent faults of aluminum alloy wires at currents of 128 A–224 A and uses thermogravimetry-differential scanning calorimetry (TG-DSC), optical microscope (OM), scanning electron microscope (SEM) and X-ray energy spectroscopy (EDS) to characterize the effects of current on the microstructure of arc beads. The results show that there are small and large amounts of Al-Si and Al-Fe binary phases in the metallographic structure of the aluminum alloy wires at the rated current, the grains are fine, and there are no significant grain boundaries. After an overcurrent fault occurs in the wires, a high-temperature arc causes the second phase in the aluminum alloy to disappear, a cellular dendritic metallographic structure appears, the grain boundaries become more well-defined, and composition segregation occurs at the grain boundaries. Using Image-Pro-Plus software to quantify the grain characteristics, the average grain size is found to gradually decrease as the current increases. In addition, by comparing and analyzing the characteristics of arc beads in aluminum wires and aluminum alloy wires under the same conditions, alloying elements are found to have a refining effect on the grain boundaries, and there are coarse precipitates at the grain boundaries in the aluminum wire arc beads. |
first_indexed | 2024-03-10T09:13:24Z |
format | Article |
id | doaj.art-d3239f797f1f41c8adeb808293e6950f |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T09:13:24Z |
publishDate | 2021-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-d3239f797f1f41c8adeb808293e6950f2023-11-22T05:52:12ZengMDPI AGMaterials1996-19442021-07-011415413310.3390/ma14154133Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent FaultXueyan Xu0Zhijin Yu1Yang Li2Weifeng Wang3Lan Xu4Department of Justice Technology, Jilin Justice Officer Academy, Changchun 130062, ChinaCollege of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, ChinaCollege of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, ChinaCollege of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, ChinaCollege of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, ChinaTo clarify the understanding and analysis of arc molten marks in electrical faults of aluminum alloy wires, this paper simulates overcurrent faults of aluminum alloy wires at currents of 128 A–224 A and uses thermogravimetry-differential scanning calorimetry (TG-DSC), optical microscope (OM), scanning electron microscope (SEM) and X-ray energy spectroscopy (EDS) to characterize the effects of current on the microstructure of arc beads. The results show that there are small and large amounts of Al-Si and Al-Fe binary phases in the metallographic structure of the aluminum alloy wires at the rated current, the grains are fine, and there are no significant grain boundaries. After an overcurrent fault occurs in the wires, a high-temperature arc causes the second phase in the aluminum alloy to disappear, a cellular dendritic metallographic structure appears, the grain boundaries become more well-defined, and composition segregation occurs at the grain boundaries. Using Image-Pro-Plus software to quantify the grain characteristics, the average grain size is found to gradually decrease as the current increases. In addition, by comparing and analyzing the characteristics of arc beads in aluminum wires and aluminum alloy wires under the same conditions, alloying elements are found to have a refining effect on the grain boundaries, and there are coarse precipitates at the grain boundaries in the aluminum wire arc beads.https://www.mdpi.com/1996-1944/14/15/4133electrical firealuminum alloy wiresovercurrent faultarc beadsmicrostructure |
spellingShingle | Xueyan Xu Zhijin Yu Yang Li Weifeng Wang Lan Xu Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault Materials electrical fire aluminum alloy wires overcurrent fault arc beads microstructure |
title | Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault |
title_full | Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault |
title_fullStr | Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault |
title_full_unstemmed | Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault |
title_short | Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault |
title_sort | microstructural study of arc beads in aluminum alloy wires with an overcurrent fault |
topic | electrical fire aluminum alloy wires overcurrent fault arc beads microstructure |
url | https://www.mdpi.com/1996-1944/14/15/4133 |
work_keys_str_mv | AT xueyanxu microstructuralstudyofarcbeadsinaluminumalloywireswithanovercurrentfault AT zhijinyu microstructuralstudyofarcbeadsinaluminumalloywireswithanovercurrentfault AT yangli microstructuralstudyofarcbeadsinaluminumalloywireswithanovercurrentfault AT weifengwang microstructuralstudyofarcbeadsinaluminumalloywireswithanovercurrentfault AT lanxu microstructuralstudyofarcbeadsinaluminumalloywireswithanovercurrentfault |