Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence.
Cell-penetrating peptides (CPPs) can traverse cellular membranes and deliver biologically active molecules into cells. In this study, we demonstrate that CPPs comprised of nona-arginine (R9) and a penetration accelerating peptide sequence (Pas) that facilitates escape from endocytic lysosomes, denot...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3694042?pdf=render |
_version_ | 1819231547252801536 |
---|---|
author | Betty R Liu Shih-Yen Lo Chia-Chin Liu Chia-Lin Chyan Yue-Wern Huang Robert S Aronstam Han-Jung Lee |
author_facet | Betty R Liu Shih-Yen Lo Chia-Chin Liu Chia-Lin Chyan Yue-Wern Huang Robert S Aronstam Han-Jung Lee |
author_sort | Betty R Liu |
collection | DOAJ |
description | Cell-penetrating peptides (CPPs) can traverse cellular membranes and deliver biologically active molecules into cells. In this study, we demonstrate that CPPs comprised of nona-arginine (R9) and a penetration accelerating peptide sequence (Pas) that facilitates escape from endocytic lysosomes, denoted as PR9, greatly enhance the delivery of noncovalently associated quantum dots (QDs) into human A549 cells. Mechanistic studies, intracellular trafficking analysis and a functional gene assay reveal that endocytosis is the main route for intracellular delivery of PR9/QD complexes. Endocytic trafficking of PR9/QD complexes was monitored using both confocal and transmission electron microscopy (TEM). Zeta-potential and size analyses indicate the importance of electrostatic forces in the interaction of PR9/QD complexes with plasma membranes. Circular dichroism (CD) spectroscopy reveals that the secondary structural elements of PR9 have similar conformations in aqueous buffer at pH 7 and 5. This study of nontoxic PR9 provides a basis for the design of optimized cargo delivery that allows escape from endocytic vesicles. |
first_indexed | 2024-12-23T11:46:42Z |
format | Article |
id | doaj.art-d3262a2b75c244fcbc7d34f1fb1bf3f8 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-23T11:46:42Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-d3262a2b75c244fcbc7d34f1fb1bf3f82022-12-21T17:48:20ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0186e6710010.1371/journal.pone.0067100Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence.Betty R LiuShih-Yen LoChia-Chin LiuChia-Lin ChyanYue-Wern HuangRobert S AronstamHan-Jung LeeCell-penetrating peptides (CPPs) can traverse cellular membranes and deliver biologically active molecules into cells. In this study, we demonstrate that CPPs comprised of nona-arginine (R9) and a penetration accelerating peptide sequence (Pas) that facilitates escape from endocytic lysosomes, denoted as PR9, greatly enhance the delivery of noncovalently associated quantum dots (QDs) into human A549 cells. Mechanistic studies, intracellular trafficking analysis and a functional gene assay reveal that endocytosis is the main route for intracellular delivery of PR9/QD complexes. Endocytic trafficking of PR9/QD complexes was monitored using both confocal and transmission electron microscopy (TEM). Zeta-potential and size analyses indicate the importance of electrostatic forces in the interaction of PR9/QD complexes with plasma membranes. Circular dichroism (CD) spectroscopy reveals that the secondary structural elements of PR9 have similar conformations in aqueous buffer at pH 7 and 5. This study of nontoxic PR9 provides a basis for the design of optimized cargo delivery that allows escape from endocytic vesicles.http://europepmc.org/articles/PMC3694042?pdf=render |
spellingShingle | Betty R Liu Shih-Yen Lo Chia-Chin Liu Chia-Lin Chyan Yue-Wern Huang Robert S Aronstam Han-Jung Lee Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. PLoS ONE |
title | Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. |
title_full | Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. |
title_fullStr | Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. |
title_full_unstemmed | Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. |
title_short | Endocytic Trafficking of Nanoparticles Delivered by Cell-penetrating Peptides Comprised of Nona-arginine and a Penetration Accelerating Sequence. |
title_sort | endocytic trafficking of nanoparticles delivered by cell penetrating peptides comprised of nona arginine and a penetration accelerating sequence |
url | http://europepmc.org/articles/PMC3694042?pdf=render |
work_keys_str_mv | AT bettyrliu endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT shihyenlo endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT chiachinliu endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT chialinchyan endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT yuewernhuang endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT robertsaronstam endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence AT hanjunglee endocytictraffickingofnanoparticlesdeliveredbycellpenetratingpeptidescomprisedofnonaarginineandapenetrationacceleratingsequence |