Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections
In this study, the projected future long-term changes of the local wave conditions at the German Baltic Sea coast over the course of the 21st century are analyzed and assessed with special focus on model agreement, statistical significance and ranges/spread of the results. An ensemble of new regiona...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-01-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/13/2/167 |
_version_ | 1797412321158496256 |
---|---|
author | Norman Dreier Edgar Nehlsen Peter Fröhle Diana Rechid Laurens M. Bouwer Susanne Pfeifer |
author_facet | Norman Dreier Edgar Nehlsen Peter Fröhle Diana Rechid Laurens M. Bouwer Susanne Pfeifer |
author_sort | Norman Dreier |
collection | DOAJ |
description | In this study, the projected future long-term changes of the local wave conditions at the German Baltic Sea coast over the course of the 21st century are analyzed and assessed with special focus on model agreement, statistical significance and ranges/spread of the results. An ensemble of new regional climate model (RCM) simulations with the RCM REMO for three RCP forcing scenarios was used as input data. The outstanding feature of the simulations is that the data are available with a high horizontal resolution and at hourly timesteps which is a high temporal resolution and beneficial for the wind–wave modelling. A new data interface between RCM output data and wind–wave modelling has been developed. Suitable spatial aggregation methods of the RCM wind data have been tested and used to generate input for the calculation of waves at quasi deep-water conditions and at a mean water level with a hybrid approach that enables the fast compilation of future long-term time series of significant wave height, mean wave period and direction for an ensemble of RCM data. Changes of the average wind and wave conditions have been found, with a majority of the changes occurring for the RCP8.5 forcing scenario and at the end of the 21st century. At westerly wind-exposed locations mainly increasing values of the wind speed, significant wave height and mean wave period have been noted. In contrast, at easterly wind-exposed locations, decreasing values are predominant. Regarding the changes of the mean wind and wave directions, westerly directions becoming more frequent. Additional research is needed regarding the long-term changes of extreme wave events, e.g., the choice of a best-fit extreme value distribution function and the spatial aggregation method of the wind data. |
first_indexed | 2024-03-09T05:00:29Z |
format | Article |
id | doaj.art-d3293269683b4efc918b744067787c9a |
institution | Directory Open Access Journal |
issn | 2073-4441 |
language | English |
last_indexed | 2024-03-09T05:00:29Z |
publishDate | 2021-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Water |
spelling | doaj.art-d3293269683b4efc918b744067787c9a2023-12-03T13:01:04ZengMDPI AGWater2073-44412021-01-0113216710.3390/w13020167Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change ProjectionsNorman Dreier0Edgar Nehlsen1Peter Fröhle2Diana Rechid3Laurens M. Bouwer4Susanne Pfeifer5Institute of River and Coastal Engineering, Hamburg University of Technology, Denickestr. 22, 21073 Hamburg, GermanyInstitute of River and Coastal Engineering, Hamburg University of Technology, Denickestr. 22, 21073 Hamburg, GermanyInstitute of River and Coastal Engineering, Hamburg University of Technology, Denickestr. 22, 21073 Hamburg, GermanyClimate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, 20095 Hamburg, GermanyClimate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, 20095 Hamburg, GermanyClimate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, 20095 Hamburg, GermanyIn this study, the projected future long-term changes of the local wave conditions at the German Baltic Sea coast over the course of the 21st century are analyzed and assessed with special focus on model agreement, statistical significance and ranges/spread of the results. An ensemble of new regional climate model (RCM) simulations with the RCM REMO for three RCP forcing scenarios was used as input data. The outstanding feature of the simulations is that the data are available with a high horizontal resolution and at hourly timesteps which is a high temporal resolution and beneficial for the wind–wave modelling. A new data interface between RCM output data and wind–wave modelling has been developed. Suitable spatial aggregation methods of the RCM wind data have been tested and used to generate input for the calculation of waves at quasi deep-water conditions and at a mean water level with a hybrid approach that enables the fast compilation of future long-term time series of significant wave height, mean wave period and direction for an ensemble of RCM data. Changes of the average wind and wave conditions have been found, with a majority of the changes occurring for the RCP8.5 forcing scenario and at the end of the 21st century. At westerly wind-exposed locations mainly increasing values of the wind speed, significant wave height and mean wave period have been noted. In contrast, at easterly wind-exposed locations, decreasing values are predominant. Regarding the changes of the mean wind and wave directions, westerly directions becoming more frequent. Additional research is needed regarding the long-term changes of extreme wave events, e.g., the choice of a best-fit extreme value distribution function and the spatial aggregation method of the wind data.https://www.mdpi.com/2073-4441/13/2/167REMOEURO-CORDEXSWANwind–wave correlationsregional climate change projectionsaverage wave conditions |
spellingShingle | Norman Dreier Edgar Nehlsen Peter Fröhle Diana Rechid Laurens M. Bouwer Susanne Pfeifer Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections Water REMO EURO-CORDEX SWAN wind–wave correlations regional climate change projections average wave conditions |
title | Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections |
title_full | Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections |
title_fullStr | Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections |
title_full_unstemmed | Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections |
title_short | Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections |
title_sort | future changes in wave conditions at the german baltic sea coast based on a hybrid approach using an ensemble of regional climate change projections |
topic | REMO EURO-CORDEX SWAN wind–wave correlations regional climate change projections average wave conditions |
url | https://www.mdpi.com/2073-4441/13/2/167 |
work_keys_str_mv | AT normandreier futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections AT edgarnehlsen futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections AT peterfrohle futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections AT dianarechid futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections AT laurensmbouwer futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections AT susannepfeifer futurechangesinwaveconditionsatthegermanbalticseacoastbasedonahybridapproachusinganensembleofregionalclimatechangeprojections |