Decomposition and stability of linear singularly perturbed systems with two small parameters

In the domain $\Omega =\left\{\left(t,\varepsilon _{1}, \varepsilon _{2} \right): t\in {\mathbb R},\varepsilon _{1}>0, \varepsilon _{2} >0\right\}$, we consider a linear singularly perturbed system with two small parameters \[ \left\{ \begin{array}{l} {\dot{x}_{0} =A_{00} x_{0} +A_{01} x_{1} +...

Full description

Bibliographic Details
Main Authors: O.V. Osypova, A.S. Pertsov, I.M. Cherevko
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2021-03-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/4124
_version_ 1797205807865004032
author O.V. Osypova
A.S. Pertsov
I.M. Cherevko
author_facet O.V. Osypova
A.S. Pertsov
I.M. Cherevko
author_sort O.V. Osypova
collection DOAJ
description In the domain $\Omega =\left\{\left(t,\varepsilon _{1}, \varepsilon _{2} \right): t\in {\mathbb R},\varepsilon _{1}>0, \varepsilon _{2} >0\right\}$, we consider a linear singularly perturbed system with two small parameters \[ \left\{ \begin{array}{l} {\dot{x}_{0} =A_{00} x_{0} +A_{01} x_{1} +A_{02} x_{2},} \\ {\varepsilon _{1} \dot{x}_{1} =A_{10} x_{0} +A_{11} x_{1} +A_{12} x_{2},} \\ {\varepsilon _{1} \varepsilon _{2} \dot{x}_{2} =A_{20} x_{0} +A_{21} x_{1} +A_{22} x_{2},} \end{array}\right. \] where $x_{0} \in {\mathbb R}^{n_{0}}$, $x_{1} \in {\mathbb R}^{n_{1}}$, $x_{2} \in {\mathbb R}^{n_{2}}$. In this paper, schemes of decomposition and splitting of the system into independent subsystems by using the integral manifolds method of fast and slow variables are investigated. We give the conditions under which the reduction principle is truthful to study the stability of zero solution of the original system.
first_indexed 2024-04-24T08:57:00Z
format Article
id doaj.art-d346d64a0700422d9e7c3aecdbf9fdd2
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:57:00Z
publishDate 2021-03-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-d346d64a0700422d9e7c3aecdbf9fdd22024-04-16T07:05:54ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102021-03-01131152110.15330/cmp.13.1.15-213601Decomposition and stability of linear singularly perturbed systems with two small parametersO.V. Osypova0https://orcid.org/0000-0003-1069-8062A.S. Pertsov1I.M. Cherevko2https://orcid.org/0000-0002-2690-2091Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, UkraineYuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, UkraineYuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, UkraineIn the domain $\Omega =\left\{\left(t,\varepsilon _{1}, \varepsilon _{2} \right): t\in {\mathbb R},\varepsilon _{1}>0, \varepsilon _{2} >0\right\}$, we consider a linear singularly perturbed system with two small parameters \[ \left\{ \begin{array}{l} {\dot{x}_{0} =A_{00} x_{0} +A_{01} x_{1} +A_{02} x_{2},} \\ {\varepsilon _{1} \dot{x}_{1} =A_{10} x_{0} +A_{11} x_{1} +A_{12} x_{2},} \\ {\varepsilon _{1} \varepsilon _{2} \dot{x}_{2} =A_{20} x_{0} +A_{21} x_{1} +A_{22} x_{2},} \end{array}\right. \] where $x_{0} \in {\mathbb R}^{n_{0}}$, $x_{1} \in {\mathbb R}^{n_{1}}$, $x_{2} \in {\mathbb R}^{n_{2}}$. In this paper, schemes of decomposition and splitting of the system into independent subsystems by using the integral manifolds method of fast and slow variables are investigated. We give the conditions under which the reduction principle is truthful to study the stability of zero solution of the original system.https://journals.pnu.edu.ua/index.php/cmp/article/view/4124singularly perturbed systemdecompositionsplittingstabilityintegral manifold
spellingShingle O.V. Osypova
A.S. Pertsov
I.M. Cherevko
Decomposition and stability of linear singularly perturbed systems with two small parameters
Karpatsʹkì Matematičnì Publìkacìï
singularly perturbed system
decomposition
splitting
stability
integral manifold
title Decomposition and stability of linear singularly perturbed systems with two small parameters
title_full Decomposition and stability of linear singularly perturbed systems with two small parameters
title_fullStr Decomposition and stability of linear singularly perturbed systems with two small parameters
title_full_unstemmed Decomposition and stability of linear singularly perturbed systems with two small parameters
title_short Decomposition and stability of linear singularly perturbed systems with two small parameters
title_sort decomposition and stability of linear singularly perturbed systems with two small parameters
topic singularly perturbed system
decomposition
splitting
stability
integral manifold
url https://journals.pnu.edu.ua/index.php/cmp/article/view/4124
work_keys_str_mv AT ovosypova decompositionandstabilityoflinearsingularlyperturbedsystemswithtwosmallparameters
AT aspertsov decompositionandstabilityoflinearsingularlyperturbedsystemswithtwosmallparameters
AT imcherevko decompositionandstabilityoflinearsingularlyperturbedsystemswithtwosmallparameters