Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function

We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens...

Full description

Bibliographic Details
Main Authors: Robert Reynolds, Allan Stauffer
Format: Article
Language:English
Published: AIMS Press 2021-12-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021082?viewType=HTML
_version_ 1818322645978972160
author Robert Reynolds
Allan Stauffer
author_facet Robert Reynolds
Allan Stauffer
author_sort Robert Reynolds
collection DOAJ
description We evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens de Haan [4] and Gradshteyn and Ryzhik <sup>[<span class="xref"><a href="#b5">5</a></span>]</sup>.
first_indexed 2024-12-13T11:00:06Z
format Article
id doaj.art-d351760757ca4aae8a5c424d9d03bb21
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-13T11:00:06Z
publishDate 2021-12-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-d351760757ca4aae8a5c424d9d03bb212022-12-21T23:49:18ZengAIMS PressAIMS Mathematics2473-69882021-12-01621324133110.3934/math.2021082Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta functionRobert Reynolds0Allan Stauffer1Department of Mathematics, York University, 4700 Keele Street, Toronto, M3J1P3, CanadaDepartment of Mathematics, York University, 4700 Keele Street, Toronto, M3J1P3, CanadaWe evaluate definite integrals of the form given by $\int_{0}^{\infty}R(a, x)\log (\cos (\alpha) \text{sech}(x)+1)dx$. The function $R(a, x)$ is a rational function with general complex number parameters. Definite integrals of this form yield closed forms for famous integrals in the books of Bierens de Haan [4] and Gradshteyn and Ryzhik <sup>[<span class="xref"><a href="#b5">5</a></span>]</sup>.http://www.aimspress.com/article/doi/10.3934/math.2021082?viewType=HTMLentries of gradshteyn and ryzhikhyperbolic integralsbierens de haanhurwitz zeta function
spellingShingle Robert Reynolds
Allan Stauffer
Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
AIMS Mathematics
entries of gradshteyn and ryzhik
hyperbolic integrals
bierens de haan
hurwitz zeta function
title Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
title_full Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
title_fullStr Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
title_full_unstemmed Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
title_short Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function
title_sort definite integral of the logarithm hyperbolic secant function in terms of the hurwitz zeta function
topic entries of gradshteyn and ryzhik
hyperbolic integrals
bierens de haan
hurwitz zeta function
url http://www.aimspress.com/article/doi/10.3934/math.2021082?viewType=HTML
work_keys_str_mv AT robertreynolds definiteintegralofthelogarithmhyperbolicsecantfunctionintermsofthehurwitzzetafunction
AT allanstauffer definiteintegralofthelogarithmhyperbolicsecantfunctionintermsofthehurwitzzetafunction