Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems
Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is kno...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/12/3/522 |
_version_ | 1827759657625583616 |
---|---|
author | Patricia Lu-Irving Jason G. Bragg Maurizio Rossetto Kit King Mitchell O’Brien Marlien M. van der Merwe |
author_facet | Patricia Lu-Irving Jason G. Bragg Maurizio Rossetto Kit King Mitchell O’Brien Marlien M. van der Merwe |
author_sort | Patricia Lu-Irving |
collection | DOAJ |
description | Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of <i>Hakea</i> (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between <i>H. sericea</i> and <i>H. teretifolia</i> was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, <i>H. sericea</i> was found to be habitually selfing, while <i>H. teretifolia</i> more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale. |
first_indexed | 2024-03-11T09:29:48Z |
format | Article |
id | doaj.art-d3668dcaad6243b9a2ad77e85506e0f0 |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-11T09:29:48Z |
publishDate | 2023-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-d3668dcaad6243b9a2ad77e85506e0f02023-11-16T17:43:34ZengMDPI AGPlants2223-77472023-01-0112352210.3390/plants12030522Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating SystemsPatricia Lu-Irving0Jason G. Bragg1Maurizio Rossetto2Kit King3Mitchell O’Brien4Marlien M. van der Merwe5Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaResearch Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaResearch Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaResearch Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaResearch Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaResearch Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens Sydney, Mrs Macquaries Rd., Sydney, NSW 2000, AustraliaPlant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of <i>Hakea</i> (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between <i>H. sericea</i> and <i>H. teretifolia</i> was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, <i>H. sericea</i> was found to be habitually selfing, while <i>H. teretifolia</i> more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.https://www.mdpi.com/2223-7747/12/3/522germplasm<i>Hakea</i>inbreedingoutcrossingselfing |
spellingShingle | Patricia Lu-Irving Jason G. Bragg Maurizio Rossetto Kit King Mitchell O’Brien Marlien M. van der Merwe Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems Plants germplasm <i>Hakea</i> inbreeding outcrossing selfing |
title | Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems |
title_full | Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems |
title_fullStr | Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems |
title_full_unstemmed | Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems |
title_short | Capturing Genetic Diversity in Seed Collections: An Empirical Study of Two Congeners with Contrasting Mating Systems |
title_sort | capturing genetic diversity in seed collections an empirical study of two congeners with contrasting mating systems |
topic | germplasm <i>Hakea</i> inbreeding outcrossing selfing |
url | https://www.mdpi.com/2223-7747/12/3/522 |
work_keys_str_mv | AT patricialuirving capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems AT jasongbragg capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems AT mauriziorossetto capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems AT kitking capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems AT mitchellobrien capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems AT marlienmvandermerwe capturinggeneticdiversityinseedcollectionsanempiricalstudyoftwocongenerswithcontrastingmatingsystems |