Summary: | Sunflower in coding theory is a class of important subspace codes and can be used to construct linear codes. In this paper, we study the minimality of linear codes over <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="double-struck">F</mi><mi>q</mi></msub></semantics></math></inline-formula> constructed from sunflowers of size <i>s</i> in all cases. For any sunflower, the corresponding linear code is minimal if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>≥</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>, and not minimal if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>3</mn><mo>≤</mo><mi>q</mi></mrow></semantics></math></inline-formula>. In the case where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mo><</mo><mi>s</mi><mo>≤</mo><mi>q</mi></mrow></semantics></math></inline-formula>, for some sunflowers, the corresponding linear codes are minimal, whereas for some other sunflowers, the corresponding linear codes are not minimal.
|