An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population

We present a mathematical model of disease (say a virus) spread that takes into account the hierarchic structure of social clusters in a population. It describes the dependence of epidemic’s dynamics on the strength of barriers between clusters. These barriers are established by authorities as preve...

Full description

Bibliographic Details
Main Authors: Andrei Khrennikov, Klaudia Oleschko
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/9/931
_version_ 1797555703531962368
author Andrei Khrennikov
Klaudia Oleschko
author_facet Andrei Khrennikov
Klaudia Oleschko
author_sort Andrei Khrennikov
collection DOAJ
description We present a mathematical model of disease (say a virus) spread that takes into account the hierarchic structure of social clusters in a population. It describes the dependence of epidemic’s dynamics on the strength of barriers between clusters. These barriers are established by authorities as preventative measures; partially they are based on existing socio-economic conditions. We applied the theory of random walk on the energy landscapes represented by ultrametric spaces (having tree-like geometry). This is a part of statistical physics with applications to spin glasses and protein dynamics. To move from one social cluster (valley) to another, a virus (its carrier) should cross a social barrier between them. The magnitude of a barrier depends on the number of social hierarchy levels composing this barrier. Infection spreads rather easily inside a social cluster (say a working collective), but jumps to other clusters are constrained by social barriers. The model implies the power law, <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msup><mi>t</mi><mrow><mo>−</mo><mi>a</mi></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> for approaching herd immunity, where the parameter <i>a</i> is proportional to inverse of one-step barrier <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><mo>.</mo></mrow></semantics></math></inline-formula> We consider linearly increasing barriers (with respect to hierarchy), i.e., the <i>m</i>-step barrier <inline-formula><math display="inline"><semantics><mrow><msub><mo>Δ</mo><mi>m</mi></msub><mo>=</mo><mi>m</mi><mo>Δ</mo><mo>.</mo></mrow></semantics></math></inline-formula> We also introduce a quantity characterizing the process of infection distribution from one level of social hierarchy to the nearest lower levels, spreading entropy <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mo>.</mo></mrow></semantics></math></inline-formula> The parameter <i>a</i> is proportional to <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mo>.</mo></mrow></semantics></math></inline-formula>
first_indexed 2024-03-10T16:51:14Z
format Article
id doaj.art-d37aa356fba242eba3feccd30f943579
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T16:51:14Z
publishDate 2020-08-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-d37aa356fba242eba3feccd30f9435792023-11-20T11:19:36ZengMDPI AGEntropy1099-43002020-08-0122993110.3390/e22090931An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the PopulationAndrei Khrennikov0Klaudia Oleschko1International Center for Mathematical Modeling in Physics and Cognitive Sciences, Linnaeus University, SE-351 95 Växjö, SwedenCentro de Geociencias, Campus UNAM Juriquilla, Universidad Nacional Autonoma de Mexico (UNAM), Blvd. Juriquilla 3001, 76230 Queretaro, MexicoWe present a mathematical model of disease (say a virus) spread that takes into account the hierarchic structure of social clusters in a population. It describes the dependence of epidemic’s dynamics on the strength of barriers between clusters. These barriers are established by authorities as preventative measures; partially they are based on existing socio-economic conditions. We applied the theory of random walk on the energy landscapes represented by ultrametric spaces (having tree-like geometry). This is a part of statistical physics with applications to spin glasses and protein dynamics. To move from one social cluster (valley) to another, a virus (its carrier) should cross a social barrier between them. The magnitude of a barrier depends on the number of social hierarchy levels composing this barrier. Infection spreads rather easily inside a social cluster (say a working collective), but jumps to other clusters are constrained by social barriers. The model implies the power law, <inline-formula><math display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msup><mi>t</mi><mrow><mo>−</mo><mi>a</mi></mrow></msup><mo>,</mo></mrow></semantics></math></inline-formula> for approaching herd immunity, where the parameter <i>a</i> is proportional to inverse of one-step barrier <inline-formula><math display="inline"><semantics><mrow><mo>Δ</mo><mo>.</mo></mrow></semantics></math></inline-formula> We consider linearly increasing barriers (with respect to hierarchy), i.e., the <i>m</i>-step barrier <inline-formula><math display="inline"><semantics><mrow><msub><mo>Δ</mo><mi>m</mi></msub><mo>=</mo><mi>m</mi><mo>Δ</mo><mo>.</mo></mrow></semantics></math></inline-formula> We also introduce a quantity characterizing the process of infection distribution from one level of social hierarchy to the nearest lower levels, spreading entropy <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mo>.</mo></mrow></semantics></math></inline-formula> The parameter <i>a</i> is proportional to <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mo>.</mo></mrow></semantics></math></inline-formula>https://www.mdpi.com/1099-4300/22/9/931disease spreadherd immunityhierarchy of social clustersultrametric spacestreessocial barriers
spellingShingle Andrei Khrennikov
Klaudia Oleschko
An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
Entropy
disease spread
herd immunity
hierarchy of social clusters
ultrametric spaces
trees
social barriers
title An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
title_full An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
title_fullStr An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
title_full_unstemmed An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
title_short An Ultrametric Random Walk Model for Disease Spread Taking into Account Social Clustering of the Population
title_sort ultrametric random walk model for disease spread taking into account social clustering of the population
topic disease spread
herd immunity
hierarchy of social clusters
ultrametric spaces
trees
social barriers
url https://www.mdpi.com/1099-4300/22/9/931
work_keys_str_mv AT andreikhrennikov anultrametricrandomwalkmodelfordiseasespreadtakingintoaccountsocialclusteringofthepopulation
AT klaudiaoleschko anultrametricrandomwalkmodelfordiseasespreadtakingintoaccountsocialclusteringofthepopulation
AT andreikhrennikov ultrametricrandomwalkmodelfordiseasespreadtakingintoaccountsocialclusteringofthepopulation
AT klaudiaoleschko ultrametricrandomwalkmodelfordiseasespreadtakingintoaccountsocialclusteringofthepopulation