Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China

Recent discoveries of oil and gas have principally been located in the central part of the Ordos Basin, which is a petroliferous basin with the largest discovered reserves and annual production of tight sandstone gas in China. For tight sandstone gas reservoirs in the transition zone of the basin ma...

Full description

Bibliographic Details
Main Authors: Hanwen Yu, Jiaren Ye, Qiang Cao, Yiming Liu, Wei Zhang
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/16/3/1493
_version_ 1797624641940881408
author Hanwen Yu
Jiaren Ye
Qiang Cao
Yiming Liu
Wei Zhang
author_facet Hanwen Yu
Jiaren Ye
Qiang Cao
Yiming Liu
Wei Zhang
author_sort Hanwen Yu
collection DOAJ
description Recent discoveries of oil and gas have principally been located in the central part of the Ordos Basin, which is a petroliferous basin with the largest discovered reserves and annual production of tight sandstone gas in China. For tight sandstone gas reservoirs in the transition zone of the basin margin, the process of natural gas accumulation has remained relatively vaguely understood, because of the transitional accumulation of geological conditions such as structure, sedimentation, and preservation. In this study, thin-section identification and scanning electron microscopic observations of the reservoir core, measurement of the physical properties of the reservoir, microscopic petrography research and measurement of the homogenization temperature of fluid inclusions, digital simulations, and laser Raman spectroscopy analysis were combined to analyze the process of natural gas accumulation of the Permian Lower Shihezi Formation in Duguijiahan block, Hangjinqi area, northern Ordos Basin. The results showed that the Lower Shihezi Formation reservoir in the Duguijiahan block began gas charging in the southern part as early as the Early Cretaceous (130–128 Ma), and then gradually charged in the northern part. Three stages were identified in the digital simulations of gas charging, i.e., the breakthrough, rapid, and fully saturated stages. The initial porosity of the Lower Shihezi Formation reservoir ranged between 28% and 40%. Later, because of strong compaction and interstitial filling during burial, the sandstone porosity decreased rapidly, and densification (porosity < 10%) occurred in the mid–late Jurassic. This late tectonic uplift caused a continuous reduction in ground temperature, and diagenesis had a weak effect on pore transformation. The present porosity of the Lower Shihezi Formation reservoir basically inherited its characteristics in the late Early Cretaceous. The current average porosity of the reservoir is 8.58%, and the average permeability is 0.88 mD, and it can thus be characterized as a tight reservoir. The gas accumulation process of the Lower Shihezi Formation has three stages: (1) the depositional stage (C–P), corresponding to the depositional stage of the source-reservoir-cap combination in gas reservoir; (2) the natural gas accumulation stage (T–K<sub>1</sub>), corresponding to the period of rapid source rock maturation and natural gas charging step-by-step; and (3) the gas reservoir adjustment stage (K<sub>2</sub>–present), corresponding to the period of uplift and natural gas charging in the early stage that gradually migrated and accumulated northward along the fracture zone. Finally, the gas accumulation model in the transition zone at the margin of basin was established.
first_indexed 2024-03-11T09:45:27Z
format Article
id doaj.art-d37c8c66ab754f4aa2987084aa79a936
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-11T09:45:27Z
publishDate 2023-02-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-d37c8c66ab754f4aa2987084aa79a9362023-11-16T16:38:18ZengMDPI AGEnergies1996-10732023-02-01163149310.3390/en16031493Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern ChinaHanwen Yu0Jiaren Ye1Qiang Cao2Yiming Liu3Wei Zhang4Key Laboratory of Tectonics and Petroleum Resources, China University of Geoscience, Ministry of Education, Wuhan 430074, ChinaKey Laboratory of Tectonics and Petroleum Resources, China University of Geoscience, Ministry of Education, Wuhan 430074, ChinaKey Laboratory of Tectonics and Petroleum Resources, China University of Geoscience, Ministry of Education, Wuhan 430074, ChinaKey Laboratory of Tectonics and Petroleum Resources, China University of Geoscience, Ministry of Education, Wuhan 430074, ChinaExploration and Development Research Institute, SINOPEC North China Company, Zhengzhou 450006, ChinaRecent discoveries of oil and gas have principally been located in the central part of the Ordos Basin, which is a petroliferous basin with the largest discovered reserves and annual production of tight sandstone gas in China. For tight sandstone gas reservoirs in the transition zone of the basin margin, the process of natural gas accumulation has remained relatively vaguely understood, because of the transitional accumulation of geological conditions such as structure, sedimentation, and preservation. In this study, thin-section identification and scanning electron microscopic observations of the reservoir core, measurement of the physical properties of the reservoir, microscopic petrography research and measurement of the homogenization temperature of fluid inclusions, digital simulations, and laser Raman spectroscopy analysis were combined to analyze the process of natural gas accumulation of the Permian Lower Shihezi Formation in Duguijiahan block, Hangjinqi area, northern Ordos Basin. The results showed that the Lower Shihezi Formation reservoir in the Duguijiahan block began gas charging in the southern part as early as the Early Cretaceous (130–128 Ma), and then gradually charged in the northern part. Three stages were identified in the digital simulations of gas charging, i.e., the breakthrough, rapid, and fully saturated stages. The initial porosity of the Lower Shihezi Formation reservoir ranged between 28% and 40%. Later, because of strong compaction and interstitial filling during burial, the sandstone porosity decreased rapidly, and densification (porosity < 10%) occurred in the mid–late Jurassic. This late tectonic uplift caused a continuous reduction in ground temperature, and diagenesis had a weak effect on pore transformation. The present porosity of the Lower Shihezi Formation reservoir basically inherited its characteristics in the late Early Cretaceous. The current average porosity of the reservoir is 8.58%, and the average permeability is 0.88 mD, and it can thus be characterized as a tight reservoir. The gas accumulation process of the Lower Shihezi Formation has three stages: (1) the depositional stage (C–P), corresponding to the depositional stage of the source-reservoir-cap combination in gas reservoir; (2) the natural gas accumulation stage (T–K<sub>1</sub>), corresponding to the period of rapid source rock maturation and natural gas charging step-by-step; and (3) the gas reservoir adjustment stage (K<sub>2</sub>–present), corresponding to the period of uplift and natural gas charging in the early stage that gradually migrated and accumulated northward along the fracture zone. Finally, the gas accumulation model in the transition zone at the margin of basin was established.https://www.mdpi.com/1996-1073/16/3/1493transition zonetight sandstone gasporosity evolutionaccumulation processDuguijiahan block
spellingShingle Hanwen Yu
Jiaren Ye
Qiang Cao
Yiming Liu
Wei Zhang
Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
Energies
transition zone
tight sandstone gas
porosity evolution
accumulation process
Duguijiahan block
title Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
title_full Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
title_fullStr Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
title_full_unstemmed Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
title_short Study on the Tight Gas Accumulation Process and Model in the Transition Zone at the Margin of the Basin: A Case Study on the Permian Lower Shihezi Formation, Duguijiahan Block, Ordos Basin, Northern China
title_sort study on the tight gas accumulation process and model in the transition zone at the margin of the basin a case study on the permian lower shihezi formation duguijiahan block ordos basin northern china
topic transition zone
tight sandstone gas
porosity evolution
accumulation process
Duguijiahan block
url https://www.mdpi.com/1996-1073/16/3/1493
work_keys_str_mv AT hanwenyu studyonthetightgasaccumulationprocessandmodelinthetransitionzoneatthemarginofthebasinacasestudyonthepermianlowershiheziformationduguijiahanblockordosbasinnorthernchina
AT jiarenye studyonthetightgasaccumulationprocessandmodelinthetransitionzoneatthemarginofthebasinacasestudyonthepermianlowershiheziformationduguijiahanblockordosbasinnorthernchina
AT qiangcao studyonthetightgasaccumulationprocessandmodelinthetransitionzoneatthemarginofthebasinacasestudyonthepermianlowershiheziformationduguijiahanblockordosbasinnorthernchina
AT yimingliu studyonthetightgasaccumulationprocessandmodelinthetransitionzoneatthemarginofthebasinacasestudyonthepermianlowershiheziformationduguijiahanblockordosbasinnorthernchina
AT weizhang studyonthetightgasaccumulationprocessandmodelinthetransitionzoneatthemarginofthebasinacasestudyonthepermianlowershiheziformationduguijiahanblockordosbasinnorthernchina