Mechanical and Microstructural Characterization of Ultrasonic Welded NiTiCu Shape Memory Alloy Wires to Silver-Coated Copper Ferrules

The aim of this study was to investigate the mechanical behavior, and the microstructure of NiTiCu shape memory alloy wires joined with silver-coated copper ferrules via ultrasonic spot welding. Therefore, the electrical resistance was measured during tensile testing, and the joints were analyzed by...

Full description

Bibliographic Details
Main Authors: Toni Sprigode, Andreas Gester, Guntram Wagner, Thomas Mäder, Björn Senf, Welf-Guntram Drossel
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/11/12/1936
Description
Summary:The aim of this study was to investigate the mechanical behavior, and the microstructure of NiTiCu shape memory alloy wires joined with silver-coated copper ferrules via ultrasonic spot welding. Therefore, the electrical resistance was measured during tensile testing, and the joints were analyzed by scanning electron microscopy. Energy-dispersive X-ray spectroscopy has determined the compounds of the developed welding zones. Furthermore, the influence of the ultrasonic welding on the transition temperatures of the NiTiCu wires was examined via differential scanning calorimetry. Tensile tests have shown that the ultimate tensile strengths of the joints reached almost 100% of that of the base material. An additional heat treatment rebuilt the typical shape memory alloy behavior after the ultrasonic welding process detwinned the martensitic wires. In addition, the B19′ structure of the welding zone and the ultrasonic spot-welding process did not affect the transition temperatures of the shape memory alloy.
ISSN:2075-4701