Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors
Photoconductive and third-order nonlinear optical properties exhibited by Cu _2 ZnSnS _4 nanostructures are presented. The samples were synthetized in thin film form by a spray pyrolysis processing route. Distinctions in the photoconductive behavior throughout the samples were clearly noted by modul...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2018-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/aaad41 |
Summary: | Photoconductive and third-order nonlinear optical properties exhibited by Cu _2 ZnSnS _4 nanostructures are presented. The samples were synthetized in thin film form by a spray pyrolysis processing route. Distinctions in the photoconductive behavior throughout the samples were clearly noted by modulating their optoelectronic response dependent on electrical frequency. Vectorial two-wave mixing experiments were carried out at a 532 nm wavelength provided by a Nd:YAG laser system to study the optical nonlinearities in the samples. An induced transparency effect was observed during nanosecond single-beam experiments in the nanostructures reported. Quantum and thermal processes were considered to be the main physical mechanism responsible for the photo-electrical phenomena and nonlinear refraction in the nanostructures. Potential applications for developing nanophotonic and nanoelectronic instrumentation systems can be contemplated. |
---|---|
ISSN: | 1367-2630 |