Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET)
The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes’ infrastructure is close to VANET, fostering an environ...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/24/3/874 |
_version_ | 1797318216581644288 |
---|---|
author | Muhammad Ehtisham Mahmood ul Hassan Amin A. Al-Awady Abid Ali Muhammad Junaid Jahangir Khan Yahya Ali Abdelrahman Ali Muhammad Akram |
author_facet | Muhammad Ehtisham Mahmood ul Hassan Amin A. Al-Awady Abid Ali Muhammad Junaid Jahangir Khan Yahya Ali Abdelrahman Ali Muhammad Akram |
author_sort | Muhammad Ehtisham |
collection | DOAJ |
description | The intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes’ infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It is critical to satisfy the vehicles’ requirements for minimal latency and fast reaction times while offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The proposed method effectively transfers workloads to the fog computing layer while considering the constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends the job and its associated resources to the fog layer. The dataset is related to crisp values for fog computing for system utilization, latency, and task deadline time for over 5000 values. The task execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set values. We proved the effectiveness of our proposed task scheduling framework via simulation tests, outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within the network parameters. The proposed technique shows better results and responses than previous techniques by scheduling the tasks toward fog layers with less response time and minimizing the overall time from task submission to completion. |
first_indexed | 2024-03-08T03:49:13Z |
format | Article |
id | doaj.art-d3ab77e7602d410aa2e76710e5a5d69f |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-03-08T03:49:13Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-d3ab77e7602d410aa2e76710e5a5d69f2024-02-09T15:22:06ZengMDPI AGSensors1424-82202024-01-0124387410.3390/s24030874Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET)Muhammad Ehtisham0Mahmood ul Hassan1Amin A. Al-Awady2Abid Ali3Muhammad Junaid4Jahangir Khan5Yahya Ali Abdelrahman Ali6Muhammad Akram7Department of IT, The University of Haripur, Haripur 22620, PakistanDepartment of Computer Skills, Deanship of Preparatory Year, Najran University, Najran 66241, Saudi ArabiaDepartment of Computer Skills, Deanship of Preparatory Year, Najran University, Najran 66241, Saudi ArabiaDepartment of Computer Science, University of Engineering and Technology, Taxila 47050, PakistanDepartment of IT, The University of Haripur, Haripur 22620, PakistanDepartment of Computer Science, Applied College Mohyail Asir, King Khalid University, Abha 62529, Saudi ArabiaDepartment of Information Systems, Faculty Computer Science and Information System, Najran University, Najran 66241, Saudi ArabiaDepartment of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 66241, Saudi ArabiaThe intelligent transportation system (ITS) relies heavily on the vehicular ad hoc network (VANET) and the internet of vehicles (IoVs), which combine cloud and fog to improve task processing capabilities. As a cloud extension, the fog processes’ infrastructure is close to VANET, fostering an environment favorable to smart cars with IT equipment and effective task management oversight. Vehicle processing power, bandwidth, time, and high-speed mobility are all limited in VANET. It is critical to satisfy the vehicles’ requirements for minimal latency and fast reaction times while offloading duties to the fog layer. We proposed a fuzzy logic-based task scheduling system in VANET to minimize latency and improve the enhanced response time when offloading tasks in the IoV. The proposed method effectively transfers workloads to the fog computing layer while considering the constrained resources of car nodes. After choosing a suitable processing unit, the algorithm sends the job and its associated resources to the fog layer. The dataset is related to crisp values for fog computing for system utilization, latency, and task deadline time for over 5000 values. The task execution, latency, deadline of task, storage, CPU, and bandwidth utilizations are used for fuzzy set values. We proved the effectiveness of our proposed task scheduling framework via simulation tests, outperforming current algorithms in terms of task ratio by 13%, decreasing average turnaround time by 9%, minimizing makespan time by 15%, and effectively overcoming average latency time within the network parameters. The proposed technique shows better results and responses than previous techniques by scheduling the tasks toward fog layers with less response time and minimizing the overall time from task submission to completion.https://www.mdpi.com/1424-8220/24/3/874task schedulingvehicular ad hoc networkfuzzy logicfog computing |
spellingShingle | Muhammad Ehtisham Mahmood ul Hassan Amin A. Al-Awady Abid Ali Muhammad Junaid Jahangir Khan Yahya Ali Abdelrahman Ali Muhammad Akram Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) Sensors task scheduling vehicular ad hoc network fuzzy logic fog computing |
title | Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) |
title_full | Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) |
title_fullStr | Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) |
title_full_unstemmed | Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) |
title_short | Internet of Vehicles (IoV)-Based Task Scheduling Approach Using Fuzzy Logic Technique in Fog Computing Enables Vehicular Ad Hoc Network (VANET) |
title_sort | internet of vehicles iov based task scheduling approach using fuzzy logic technique in fog computing enables vehicular ad hoc network vanet |
topic | task scheduling vehicular ad hoc network fuzzy logic fog computing |
url | https://www.mdpi.com/1424-8220/24/3/874 |
work_keys_str_mv | AT muhammadehtisham internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT mahmoodulhassan internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT aminaalawady internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT abidali internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT muhammadjunaid internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT jahangirkhan internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT yahyaaliabdelrahmanali internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet AT muhammadakram internetofvehiclesiovbasedtaskschedulingapproachusingfuzzylogictechniqueinfogcomputingenablesvehicularadhocnetworkvanet |