Searching for spin glass ground states through deep reinforcement learning
Abstract Spin glasses are disordered magnets with random interactions that are, generally, in conflict with each other. Finding the ground states of spin glasses is not only essential for understanding the nature of disordered magnets and many other physical systems, but also useful to solve a broad...
Main Authors: | Changjun Fan, Mutian Shen, Zohar Nussinov, Zhong Liu, Yizhou Sun, Yang-Yu Liu |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Nature Portfolio
2023-02-01
|
סדרה: | Nature Communications |
גישה מקוונת: | https://doi.org/10.1038/s41467-023-36363-w |
פריטים דומים
-
Reply to: Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture
מאת: Changjun Fan, et al.
יצא לאור: (2023-09-01) -
Deep reinforced learning heuristic tested on spin-glass ground states: The larger picture
מאת: Stefan Boettcher
יצא לאור: (2023-09-01) -
Suppressed density of states in self-generated Coulomb glasses
מאת: Louk Rademaker, et al.
יצא לאור: (2018-01-01) -
Searching for the ground state of complex spin-ice systems using deep learning techniques
מאת: H. Y. Kwon, et al.
יצא לאור: (2022-09-01) -
Cyclic quantum annealing: searching for deep low-energy states in 5000-qubit spin glass
מאת: Hao Zhang, et al.
יצא לאור: (2024-12-01)